Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 26(9): 4773-4784, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588419

RESUMO

Differentiating types of hematologic malignancies is vital to determine therapeutic strategies for the newly diagnosed patients. Flow cytometry (FC) can be used as diagnostic indicator by measuring the multi-parameter fluorescent markers on thousands of antibody-bound cells, but the manual interpretation of large scale flow cytometry data has long been a time-consuming and complicated task for hematologists and laboratory professionals. Past studies have led to the development of representation learning algorithms to perform sample-level automatic classification. In this work, we propose a chunking-for-pooling strategy to include large-scale FC data into a supervised deep representation learning procedure for automatic hematologic malignancy classification. The use of discriminatively-trained representation learning strategy and the fixed-size chunking and pooling design are key components of this framework. It improves the discriminative power of the FC sample-level embedding and simultaneously addresses the robustness issue due to an inevitable use of down-sampling in conventional distribution based approaches for deriving FC representation. We evaluated our framework on two datasets. Our framework outperformed other baseline methods and achieved 92.3% unweighted average recall (UAR) for four-class recognition on the UPMC dataset and 85.0% UAR for five-class recognition on the hema.to dataset. We further compared the robustness of our proposed framework with that of the traditional downsampling approach. Analysis of the effects of the chunk size and the error cases revealed further insights about different hematologic malignancy characteristics in the FC data.


Assuntos
Algoritmos , Neoplasias Hematológicas , Neoplasias Hematológicas/diagnóstico , Humanos
2.
Front Med (Lausanne) ; 8: 789874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111778

RESUMO

OBJECTIVE: This study aimed to identify phenotypic clinical features associated with acute kidney injury (AKI) to predict non-recovery from AKI at hospital discharge using electronic health record data. METHODS: Data for hospitalized patients in the AKI Recovery Evaluation Study were derived from a large healthcare delivery system in Taiwan between January 2011 and December 2017. Living patients with AKI non-recovery were used to derive and validate multiple predictive models. In total, 64 candidates variables, such as demographic characteristics, comorbidities, healthcare services utilization, laboratory values, and nephrotoxic medication use, were measured within 1 year before the index admission and during hospitalization for AKI. RESULTS: Among the top 20 important features in the predictive model, 8 features had a positive effect on AKI non-recovery prediction: AKI during hospitalization, serum creatinine (SCr) level at admission, receipt of dialysis during hospitalization, baseline comorbidity of cancer, AKI at admission, baseline lymphocyte count, baseline potassium, and low-density lipoprotein cholesterol levels. The predicted AKI non-recovery risk model using the eXtreme Gradient Boosting (XGBoost) algorithm achieved an area under the receiver operating characteristic (AUROC) curve statistic of 0.807, discrimination with a sensitivity of 0.724, and a specificity of 0.738 in the temporal validation cohort. CONCLUSION: The machine learning model approach can accurately predict AKI non-recovery using routinely collected health data in clinical practice. These results suggest that multifactorial risk factors are involved in AKI non-recovery, requiring patient-centered risk assessments and promotion of post-discharge AKI care to prevent AKI complications.

3.
J Med Internet Res ; 22(8): e16903, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749223

RESUMO

BACKGROUND: Community-acquired acute kidney injury (CA-AKI)-associated hospitalizations impose significant health care needs and contribute to in-hospital mortality. However, most risk prediction models developed to date have focused on AKI in a specific group of patients during hospitalization, and there is limited knowledge on the baseline risk in the general population for preventing CA-AKI-associated hospitalization. OBJECTIVE: To gain further insight into risk exploration, the aim of this study was to develop, validate, and establish a scoring system to facilitate health professionals in enabling early recognition and intervention of CA-AKI to prevent permanent kidney damage using different machine-learning techniques. METHODS: A nested case-control study design was employed using electronic health records derived from a group of Chang Gung Memorial Hospitals in Taiwan from 2010 to 2017 to identify 234,867 adults with at least two measures of serum creatinine at hospital admission. Patients were classified into a derivation cohort (2010-2016) and a temporal validation cohort (2017). Patients with the first episode of CA-AKI at hospital admission were classified into the case group and those without CA-AKI were classified in the control group. A total of 47 potential candidate variables, including age, gender, prior use of nephrotoxic medications, Charlson comorbid conditions, commonly measured laboratory results, and recent use of health services, were tested to develop a CA-AKI hospitalization risk model. Permutation-based selection with both the extreme gradient boost (XGBoost) and least absolute shrinkage and selection operator (LASSO) algorithms was performed to determine the top 10 important features for scoring function development. RESULTS: The discriminative ability of the risk model was assessed by the area under the receiver operating characteristic curve (AUC), and the predictive CA-AKI risk model derived by the logistic regression algorithm achieved an AUC of 0.767 (95% CI 0.764-0.770) on derivation and 0.761 on validation for any stage of AKI, with positive and negative predictive values of 19.2% and 96.1%, respectively. The risk model for prediction of CA-AKI stages 2 and 3 had an AUC value of 0.818 for the validation cohort with positive and negative predictive values of 13.3% and 98.4%, respectively. These metrics were evaluated at a cut-off value of 7.993, which was determined as the threshold to discriminate the risk of AKI. CONCLUSIONS: A machine learning-generated risk score model can identify patients at risk of developing CA-AKI-related hospitalization through a routine care data-driven approach. The validated multivariate risk assessment tool could help clinicians to stratify patients in primary care, and to provide monitoring and early intervention for preventing AKI while improving the quality of AKI care in the general population.


Assuntos
Injúria Renal Aguda/epidemiologia , Infecções Comunitárias Adquiridas/epidemiologia , Aprendizado de Máquina/normas , Medição de Risco/métodos , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Registros Eletrônicos de Saúde , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade
4.
Sci Rep ; 10(1): 5654, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221367

RESUMO

Liver transplantation is one of the most effective treatments for end-stage liver disease, but the demand for livers is much higher than the available donor livers. Model for End-stage Liver Disease (MELD) score is a commonly used approach to prioritize patients, but previous studies have indicated that MELD score may fail to predict well for the postoperative patients. This work proposes to use data-driven approach to devise a predictive model to predict postoperative survival within 30 days based on patient's preoperative physiological measurement values. We use random forest (RF) to select important features, including clinically used features and new features discovered from physiological measurement values. Moreover, we propose a new imputation method to deal with the problem of missing values and the results show that it outperforms the other alternatives. In the predictive model, we use patients' blood test data within 1-9 days before surgery to construct the model to predict postoperative patients' survival. The experimental results on a real data set indicate that RF outperforms the other alternatives. The experimental results on the temporal validation set show that our proposed model achieves area under the curve (AUC) of 0.771 and specificity of 0.815, showing superior discrimination power in predicting postoperative survival.


Assuntos
Sobrevivência de Enxerto/fisiologia , Transplante de Fígado/mortalidade , Fígado/cirurgia , Área Sob a Curva , Doença Hepática Terminal/mortalidade , Doença Hepática Terminal/cirurgia , Feminino , Humanos , Testes de Função Hepática/métodos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Doadores de Tecidos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...