Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13378, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862574

RESUMO

This review used traditional and network meta-analyses (NMA) to conduct a comprehensive study of antithrombotic therapies in children with thromboembolic disease. We searched the PubMed, Embase, Cochrane Library, Web of Science and ClinicalTrials.gov databases from their inception to 26 February, 2023. And we finally included 16 randomized controlled trials. In the prevention of thromboembolic events (TEs), the use of anticoagulants had a low risk of TEs (relative risk (RR) 0.73, 95% CI 0.56 to 0.94) and a high risk of minor bleeding (RR 1.43, 95% CI 1.09 to 1.86) compared with no anticoagulants. In the treatment of TEs, direct oral anticoagulants (DOACs) were not inferior to standard anticoagulation in terms of efficacy and safety outcomes. In NMA, rivaroxaban and apixaban showed the lowest risk for TEs and major or clinically relevant nonmajor bleeding. According to the overall assessment of efficacy and safety, dabigatran may be the best choice for children with thromboembolic disease. The results of our study will provide references and suggestions for clinical drug selection.


Assuntos
Fibrinolíticos , Hemorragia , Tromboembolia , Humanos , Criança , Tromboembolia/prevenção & controle , Tromboembolia/tratamento farmacológico , Tromboembolia/etiologia , Fibrinolíticos/efeitos adversos , Fibrinolíticos/uso terapêutico , Hemorragia/induzido quimicamente , Anticoagulantes/uso terapêutico , Anticoagulantes/efeitos adversos , Resultado do Tratamento , Pirazóis/uso terapêutico , Pirazóis/efeitos adversos , Dabigatrana/efeitos adversos , Dabigatrana/uso terapêutico , Rivaroxabana/uso terapêutico , Rivaroxabana/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Piridonas
2.
Angew Chem Int Ed Engl ; 63(26): e202402343, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639055

RESUMO

Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).

4.
Nat Mater ; 23(5): 695-702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287128

RESUMO

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

5.
Angew Chem Int Ed Engl ; 63(8): e202316227, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179837

RESUMO

The limited exciton lifetime (τ, generally <1 ns) leads to short exciton diffusion length (LD ) of organic semiconductors, which is the bottleneck issue impeding the further improvement of power conversion efficiencies (PCEs) for organic solar cells (OSCs). However, efficient strategies to prolong intrinsic τ are rare and vague. Herein, we propose a facile method to efficiently reduce vibrational frequency of molecular skeleton and suppress exciton-vibration coupling to decrease non-radiative decay rate and thus prolong τ via deuterating nonfullerene acceptors. The τ remarkably increases from 0.90 ns (non-deuterated L8-BO) to 1.35 ns (deuterated L8-BO-D), which is the record for organic photovoltaic materials. Besides, the inhibited molecular vibration improves molecular planarity of L8-BO-D for enhanced exciton diffusion coefficient. Consequently, the LD increases from 7.9 nm (L8-BO) to 10.7 nm (L8-BO-D). The prolonged LD of L8-BO-D enables PM6 : L8-BO-D-based bulk heterojunction OSCs to acquire higher PCEs of 18.5 % with more efficient exciton dissociation and weaker charge carrier recombination than PM6 : L8-BO-based counterparts. Moreover, benefiting from the prolonged LD , D18/L8-BO-D-based pseudo-planar heterojunction OSCs achieve an impressive PCE of 19.3 %, which is among the highest values. This work provides an efficient strategy to increase the τ and thus LD of organic semiconductors, boosting PCEs of OSCs.

6.
Adv Mater ; 36(5): e2308909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939009

RESUMO

Controlling vertical phase separation of the active layer to enable efficient exciton dissociation and charge carrier transport is crucial to boost power conversion efficiencies (PCEs) of pseudoplanar heterojunction (PPHJ) organic solar cells (OSCs). However, how to optimize the vertical phase separation of PPHJ OSCs via molecule design is rarely reported yet. Herein, ternary polymerization strategy is employed to develop a series of polymer donors, DL1-DL4, and regulate their solubility, molecular aggregation, molecular orientation, and miscibility, thus efficiently manipulating vertical phase separation in PPHJ OSCs. Among them, DL1 not only has enhanced solubility, inhibited molecular aggregation and partial edge-on orientation to facilitate acceptor molecules, Y6, to permeate into polymer layer and increase donor/acceptor interfaces, but also sustains high crystallinity and appropriate miscibility with Y6 to acquire ordered molecular packing, thus achieving optimized vertical phase separation to well juggle exciton dissociation and charge transport in PPHJ devices. Therefore, DL1/Y6 based PPHJ OSCs gain the best exciton dissociation probability, highest charge carrier mobilities and weakest charge recombination, and thus afford an impressive PCE of 19.10%, which is the record value for terpolymer donors. It demonstrates that ternary polymerization is an efficient method to optimize vertical phase separation in PPHJ OSCs for high PCEs.

7.
Chem Commun (Camb) ; 60(4): 364-373, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38099599

RESUMO

The high trap density (generally 1016-1018 cm-3) in organic solar cells (OSCs) brings about the localization of charge carriers and reduced charge carrier lifetime, mainly due to the weak intermolecular interactions of organic semiconductors resulting in their relatively poor crystallinity, which leads to low charge carrier mobilities and intense non-radiative recombination, thus impeding the further improvement of power conversion efficiencies (PCEs). Therefore, trap suppression is crucial to boost the performance of OSCs, and improving the crystallinity of donor/acceptor materials and enhancing the molecular order in devices can contribute to the trap suppression in OSCs. In this feature article, we summarize the recent advances of trap suppression in OSCs by material design and device engineering, and further outline possible development directions for trap suppression to enhance PCEs of OSCs.

8.
Angew Chem Int Ed Engl ; 62(40): e202309922, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37578857

RESUMO

The Suzuki-Miyaura cross-coupling is one of the most important and powerful methods for constructing C-C bonds. However, the protodeboronation of arylboronic acids hinder the development of Suzuki-Miyaura coupling in the precise synthesis of conjugated polymers (CPs). Here, an anhydrous room temperature Suzuki-Miyaura cross-coupling reaction between (hetero)aryl boronic esters and aryl sulfides was explored, of which universality was exemplified by thirty small molecules and twelve CPs. Meanwhile, the mechanistic studies involving with capturing four coordinated borate intermediate revealed the direct transmetalation of boronic esters in the absence of H2 O suppressing the protodeboronation. Additionally, the room temperature reaction significantly reduced the homocoupling defects and enhanced the optoelectronic properties of the CPs. In all, this work provides a green protocol to synthesize alternating CPs.

9.
Angew Chem Int Ed Engl ; 62(34): e202307466, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37403233

RESUMO

Recombination of free charges in organic semiconductors reduces the available photo-induced charge-carriers and restricts photovoltaic efficiency. In this work, the chiral organic semiconductors (Y6-R and Y6-S with enantiopure R- and S- chiral alkyl sidechains) are designed and synthesized, which show effective aggregation-induced chirality through mainchain packing with chiral conformations in non-centrosymmetric space groups with tilt chirality. Based on the analysis of spin-injection, magnetic-hysteresis loop, and thermodynamics and dynamics of the excited state, we suggest that the aggregation-induced chirality can generate spin-polarization, which suppresses charge recombination and offers more available charge-carriers within Y6-R and Y6-S relative to the achiral counterpart (Y6). Then the chiral Y6-R and Y6-S show enhanced catalytic activity with optimal average hydrogen evolution rates of 205 and 217 mmol h-1 g-1 , respectively, 60-70 % higher than Y6, when they are employed as nanoparticle photocatalysts in photocatalytic hydrogen evolution under simulated solar light, AM1.5G, 100 mW cm-2 .

10.
Angew Chem Int Ed Engl ; 62(41): e202306307, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340517

RESUMO

The direct arylation polycondensation (DArP) has become one of the most important methods to construct conjugated polymers (CPs). However, the homocoupling side-reactions of aryl halides and the low regioseletive reactivities of unfunctionalized aryls hinder the development of DArP. Here, an efficient Pd and Cu co-catalyzed DArP was developed via inert C-S bond cleavage of aryl thioethers, of which robustness was exemplified by over twenty conjugated polymers (CPs), including copolymers, homopolymers, and random polymers. The capture of oxidative addition intermediate together with experimental and theoretic results suggested the important role of palladium (Pd) and copper (Cu) co-catalysis with a bicyclic mechanism. The studies of NMR, molecular weights, trap densities, two-dimensional grazing-incidence wide-angle X-ray scattering (2D-GIWAXS), and the charge transport mobilities revealed that the homocoupling reactions were significantly suppressed with high regioselectivity of unfunctionalized aryls, suggesting this method is an excellent choice for synthesizing high performance CPs.

11.
Science ; 380(6643): 404-409, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104579

RESUMO

Controlling the perovskite morphology and defects at the buried perovskite-substrate interface is challenging for inverted perovskite solar cells. In this work, we report an amphiphilic molecular hole transporter, (2-(4-(bis(4-methoxyphenyl)amino)phenyl)-1-cyanovinyl)phosphonic acid, that features a multifunctional cyanovinyl phosphonic acid group and forms a superwetting underlayer for perovskite deposition, which enables high-quality perovskite films with minimized defects at the buried interface. The resulting perovskite film has a photoluminescence quantum yield of 17% and a Shockley-Read-Hall lifetime of nearly 7 microseconds and achieved a certified power conversion efficiency (PCE) of 25.4% with an open-circuit voltage of 1.21 volts and a fill factor of 84.7%. In addition, 1-square centimeter cells and 10-square centimeter minimodules show PCEs of 23.4 and 22.0%, respectively. Encapsulated modules exhibited high stability under both operational and damp heat test conditions.

12.
Sci Adv ; 9(13): eadf6152, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989368

RESUMO

High-sensitivity organic photodetectors (OPDs) with strong near-infrared (NIR) photoresponse have attracted enormous attention due to potential applications in emerging technologies. However, few organic semiconductors have been reported with photoelectric response beyond ~1.1 µm, the detection limit of silicon detectors. Here, we extend the absorption of organic small-molecule semiconductors to below silicon bandgap, and even to 0.77 eV, through introducing the newly designed quinoid-terminals with high Mulliken-electronegativity (5.62 eV). The fabricated photodiode-type NIR OPDs exhibit detectivity (D*) over 1012 Jones in 0.41 to 1.2 µm under zero bias with a maximum of 2.9 × 1012 Jones at 1.02 µm, which is the highest D* for reported OPDs in photovoltaic-mode with response spectra beyond 1.1 µm. The high D* in 0.9 to 1.2 µm is comparable to those of commercial InGaAs photodetectors, despite the detection limit of our OPDs is shorter than InGaAs (~1.7 µm). A spectrometer prototype with a wide measurable region (0.4 to 1.25 µm) and NIR imaging under 1.2-µm illumination are demonstrated successfully in OPDs.

13.
Angew Chem Int Ed Engl ; 62(12): e202217989, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700554

RESUMO

Efficient in situ deposition of metallic cocatalyst, like zero-valent platinum (Pt), on organic photovoltaic catalysts (OPCs) is the prerequisite for their high catalytic activities. Here we develop the OPC (Y6CO), by introducing carbonyl in the core, which is available to σ-π coordinate with transition metals, due to the high-energy empty π* orbital of carbonyl. Y6CO exhibits a stronger capability to anchor Pt species and reduce them to metallic state, resulting in more Pt0 deposition, relative to the control OPC without the central σ-π anchor. Single-component and heterojunction nanoparticles (NPs) employing Y6CO show enhanced average hydrogen evolution rates of 230.98 and 323.22 mmol h-1 g[OPC] -1 , respectively, under AM 1.5G, 100 mW cm-2 for 10 h, and heterojunction NPs yield the external quantum efficiencies of ca. 10 % in 500-800 nm. This work demonstrates that σ-π anchoring is one efficient strategy for integrating metallic cocatalyst and OPC for high-performance photocatalysis.

14.
Int J Low Extrem Wounds ; 22(1): 152-155, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33225768

RESUMO

Vibrio vulnificus is a deadly marine pathogen that can cause necrotizing fasciitis, septic shock, and even death in severe cases. The relatively low incidence and atypical early-stage symptoms may hinder many physicians from carrying out surgical intervention effectively, thus leading to an increase of mortality in infected patients. This article reported a patient who developed necrotizing fasciitis and septic shock after the exposure to freshwater shrimp stabbed on the limb. By reviewing and analyzing previous studies, it was found out that the timing of surgery could have a significant impact on the patients for their necrotizing fasciitis caused by Vibrio vulnificus infection. The mortality among patients undergoing early-stage surgical treatment (≤12 hours from the time of admission) was significantly lower than that of patients undergoing late surgical treatment (>12 hours).


Assuntos
Fasciite Necrosante , Choque Séptico , Vibrioses , Vibrio vulnificus , Humanos , Fasciite Necrosante/diagnóstico , Fasciite Necrosante/etiologia , Choque Séptico/etiologia , Choque Séptico/complicações , Vibrioses/diagnóstico , Vibrioses/complicações
15.
Adv Mater ; 35(9): e2210463, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36546408

RESUMO

The short charge-carrier diffusion length (LD ) (100-300 nm) in organic bulk heterojunction (BHJ) impedes the further improvement in power conversion efficiency (PCE) of organic solar cells (OSCs), especially for thick-film (>400 nm) devices matching with industrial solution processing. Here a facile method is developed to efficiently increase LD and then improve PCEs of OSCs via introducing a fullerene liquid crystal, F1, into the active layer. F1 combines the inherent high electron mobility of fullerene and strong self-assembly capacity of liquid crystal, providing a fast channel for charge-carrier transport and reducing energetic disorder and trap density in BHJ film via enhancing crystallization. Typically, in PM6:Y6:F1 BHJ, the enhanced charge-carrier mobility (>10-2 cm-2 V-1 s-1 ) and prolonged charge-carrier lifetime (55.3 µs) are acquired to realize the record LD of 1.6 or 2.4 µm for electron or hole, respectively, which are much higher than those of the PM6:Y6 binary sample and comparable to or even better than those values reported for some inorganic/hybrid materials, such as CuInx Ga(1- x ) Se2 (CIGS) and perovskite thin films. Benefitting from the micrometer-scale LD , the PM6:Y6:F1 ternary OSCs sustain a remarkable PCE of 15.23% with the active layer thickness approaching 500 nm.

16.
Adv Mater ; 35(3): e2207336, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36305597

RESUMO

The high trap density (generally 1016 to 1018  cm-3 ) in thin films of organic semiconductors is the primary reason for the inferior charge-carrier mobility and large nonradiative recombination energy loss (ΔEnr ) in organic solar cells (OSCs), limiting improvement in power conversion efficiencies (PCEs). In this study, the trap density in OSCs is efficiently reduced via extending the donor core of nonfullerene acceptors (NFAs) from a heptacyclic unit to a nonacyclic unit. TTPIC-4F with a nonacyclic unit has stronger intramolecular and intermolecular interactions, affording higher crystallinity in thin films relative to its counterpart BTPIC-4F. Thus, the D18:TTPIC-4F-based device achieves a lower trap density of 4.02 × 1015  cm-3 , comparable to some typical high-performance inorganic/hybrid semiconductors, with higher mobility and inhibited charge-carrier recombination in devices. Therefore, the D18:TTPIC-4F-based OSC exhibits an impressive PCE of 17.1% with a low ΔEnr of 0.208 eV, which is the best known value for A-D-A-type NFAs. Therefore, extending the donor core of NFAs is an efficient method for suppressing trap states in OSCs for high PCEs.

17.
Sci Bull (Beijing) ; 67(2): 171-177, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546010

RESUMO

Device stability becomes one of the most crucial issues for the commercialization of organic solar cells (OSCs) after high power conversion efficiencies have been achieved. Besides the intrinsic stability of photoactive materials, the chemical/catalytic reaction between interfacial materials and photoactive materials is another critical factor that determines the stability of OSC devices. Herein, we design and synthesize a reaction-inert rylene diimide-embedded hyperbranched polymer named as PDIEIE, which effectively reduces the work function of indium tin oxide electrode from 4.62 to 3.65 eV. Meanwhile, PDIEIE shows negligible chemical reaction with high-performance photoactive materials and no catalytic effect under strong ultraviolet illumination, resulting in much better photo-stability of OSCs with PDIEIE cathode interlayer (CIL), relative to the traditional CILs, including most-widely used metal oxides and polyethyleneimine derivatives.

18.
J Am Chem Soc ; 144(28): 12747-12755, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35815841

RESUMO

The short exciton diffusion length (LD) associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a large integral spectral overlap of 3.32 × 1016 nm4 M-1 cm-1, the average LD of F1 film increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6). Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an optimized average hydrogen evolution rate (HER) of 152.60 mmol h-1 g-1 under AM 1.5G sunlight (100 mW cm-2) illumination for 10 h, which is among the best results for photocatalytic hydrogen evolution.

19.
Adv Mater ; 34(28): e2201600, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35545992

RESUMO

Designing ultrastrong near-infrared (NIR) absorbing organic semiconductors is a critical prerequisite for sensitive NIR thin film organic photodetectors (OPDs), especially in the region of beyond 900 nm, where the absorption coefficient of commercial single crystalline silicon (c-Si) is below 103 cm-1 . Herein, a pyrrolo[3,2-b]thieno[2,3-d]pyrrole heterocyclic core (named as BPPT) with strong electron-donating property and stretched geometry is developed. Relative to their analogue Y6, BPPT-contained molecules, BPPT-4F and BPPT-4Cl, show substantially upshifted and more delocalized highest occupied molecular orbitals, and larger transition dipole moments, leading to bathochromic and hyperchromic absorption spectra extending beyond 1000 nm with very large absorption coefficients (up to 3.7-4.3 × 105 cm-1 ) as thin films. These values are much higher than those (104 to 1 × 105 cm-1 ) of typical organic semiconductors, and 1-2 orders higher than those of commercial inorganic materials, such as c-Si, Ge, and InGaAs. The OPDs based on BPPT-4F or BPPT-4Cl blending polymer PBDB-T show high detectivity of above 1012 Jones in a wide wavelength range of 310-1010 nm with excellent peak values of 1.3-2.2 × 1013 Jones, respectively, which are comparable with and even better than those commercial inorganic photodetectors.

20.
Angew Chem Int Ed Engl ; 61(27): e202203778, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35488103

RESUMO

Inorganic cesium lead iodide perovskite CsPbI3 is attracting great attention as a light absorber for single or multi-junction photovoltaics due to its outstanding thermal stability and proper band gap. However, the device performance of CsPbI3 -based perovskite solar cells (PSCs) is limited by the unsatisfactory crystal quality and thus severe non-radiative recombination. Here, vacuum-assisted thermal annealing (VATA) is demonstrated as an effective approach for controlling the morphology and crystallinity of the CsPbI3 perovskite films formed from the precursors of PbI2 , CsI, and dimethylammonium iodide (DMAI). By this method, a large-area and high-quality CsPbI3 film is obtained, exhibiting a much reduced trap-state density with prolonged charge lifetime. Consequently, the solar cell efficiency is raised from 17.26 to 20.06 %, along with enhanced stability. The VATA would be an effective approach for fabricating high-performance thin-film CsPbI3 perovskite optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...