Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38606736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides have emerged as promising quantum functional blocks benefitting from their unique combination of spin, valley, and layer degrees of freedom, particularly for the tremendous flexibility of moiré superlattices formed by van der Waals stacking. These degrees of freedom coupled with the enhanced Coulomb interaction in 2D structures allow excitons to serve as on-chip information carriers. However, excitons are spatially circumscribed due to their low mobility and limited lifetime. One way to overcome these limitations is through the coupling of excitons with surface plasmon polaritons (SPPs), which facilitates an interaction between remote quantum states. Here, we showcase the successful coupling of SPPs with interlayer excitons in molybdenum diselenide/tungsten diselenide heterobilayers. Our results indicate that the valley polarization can be efficiently transferred to SPPs, enabling preservation of polarization information even after propagating tens of micrometers.

2.
Nat Commun ; 14(1): 7347, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963897

RESUMO

In the quest to connect bulk topological quantum numbers to measurable parameters in real materials, current established approaches often necessitate specific conditions, limiting their applicability. Here we propose and demonstrate an approach to link the non-trivial hierarchical bulk topology to the multidimensional partition of local density of states (LDOS), denoted as the bulk-LDOS correspondence. In finite-size topologically nontrivial photonic crystals, we observe the LDOS partitioned into three distinct regions: a two-dimensional interior bulk area, a one-dimensional edge region, and zero-dimensional corner sites. Contrarily, topologically trivial cases exhibit uniform LDOS distribution across the entire two-dimensional bulk area. Our findings provide a general framework for distinguishing topological insulators and uncovering novel aspects of topological directional band-gap materials, even in the absence of in-gap states.

3.
Phys Rev Lett ; 129(12): 123901, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179206

RESUMO

Quantum tunneling, one of the most celebrated effects arising from the wave nature of matter, describes the partial penetration of an incident propagating wave through a potential barrier in the form of an evanescent field that exponentially decays from the incident interface. A similar tunneling effect has also been observed in classical systems, such as the frustrated total internal reflection. Here we reveal an unexplored form of tunneling for electromagnetic waves which features opposite behaviors for the electric and magnetic fields, with one turning into a growing field, and the other a decaying field, in a medium that exhibits both ϵ-µ-zero and bianisotropy. Our Letter provides a new mechanism for manipulating electromagnetic waves for novel device applications.

4.
Opt Express ; 28(20): 29513-29528, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114850

RESUMO

Plasmonic metamaterials enable extraordinary manipulation of key constitutive properties of light at a subwavelength scale and thus have attracted significant interest. Here, we report a simple and convenient nanofabrication method for a novel meta-device by glancing deposition of gold into anodic aluminum oxide templates on glass substrates. A methodology with the assistance of ellipsometric measurements to examine the anisotropy and optical activity properties is presented. A tunable polarization conversion in both transmission and reflection is demonstrated. Specifically, giant broadband circular dichroism for reflection at visible wavelengths is experimentally realized by oblique incidence, due to the extrinsic chirality resulting from the mutual orientation of the metamaterials and the incident beam. This work paves the way for practical applications for large-area, low-cost polarization modulators, polarization imaging, displays, and bio-sensing.

5.
Opt Express ; 27(13): 18740-18750, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252811

RESUMO

Designing reconfigurable metasurfaces that can dynamically control scattered electromagnetic waves and work in the near-infrared (NIR) and optical regimes remains a challenging task, which is hindered by the static material property and fixed structures. Phase change materials (PCMs) can provide high contrast optical refractive indexes at high frequencies between amorphous and crystal states, therefore are promising as feasible materials for reconfigurable metasurfaces. Here, we propose a hybrid metasurface that can arbitrarily modulate the complex amplitude of incident light with uniform amplitude and full 2π phase coverage by utilizing composite concentric rings (CCRs) with different ratios of gold and PCMs. Our designed metasurface possesses a bi-functionality that is capable of splitting beams or generating vortex beams by thermal switching between metal and semiconductor states of vanadium oxide (VO2), respectively. It can be easily integrated into low loss photonic circuits with an ultra-small footprint. Our metadevice serves as a novel paradigm for active control of beams, which may open new opportunities for signal processing, memory storage, holography, and anti-counterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...