Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23295, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163213

RESUMO

Ulcerative colitis (UC) is one of the primary inflammatory bowel diseases (IBDs) and causes a serious threat to human public health around the world. Currently, there are no proven safe and effective treatment options to treat UC. Fraxetin (Fxt) is a widely recognized antioxidant and anti-inflammatory legume derived from ash bark. In the present study, we investigated the protective effect and mechanism of Fxt on UC. Our results showed that Fxt significantly attenuated the body weight, colon length reduction, tissue damage, and disease activity index induced by dextran sodium sulphate (DSS). Moreover, the DSS-induced activation of the NF-κB pathway and NLRP3 inflammasomes was inhibited, and the inflammatory response was reduced. Fxt restored gut barrier function by increasing the number of goblet cells and the levels of tight junction proteins (ZO-1 and occludin). In addition, Fxt can alter the intestinal microbiota by enhancing the diversity of the microbiota, increasing the relative abundance of beneficial bacteria and inhibiting the growth of harmful bacteria. These results revealed that Fxt alleviates DSS-induced colitis by modulating the inflammatory response, enhancing epithelial barrier integrity and regulating the gut microbiota. This study may provide a scientific basis for the potential therapeutic effect of Fxt in the prevention of colitis and other related diseases.

2.
Virol J ; 20(1): 151, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452371

RESUMO

Pseudorabies virus (PRV) can infect multiple hosts and lead to fatal encephalitis. There is a significant increase in the number of microglia in the brain of animals infected with PRV. However, whether and how microglia contribute to central nervous system damage in PRV infection remain unknown. In the present study, we elucidated that PRV infection can cause more severe inflammatory cell infiltration, thicker and more numerous vessel sleeve walls, and more severe inflammatory responses in the brains of natural hosts (pigs) than in those of nonnatural hosts (mice). In a mice infection model, activated microglia restricted viral replication in the early stage of infection. Acute neuroinflammation caused by microglia hyperactivation at late-stage of infection. Furthermore, in vitro experiments revealed that microglia restricted viral replication and decreased viral infectivity. This may be associated with the phagocytic ability of microglia because we observed a significant increase in the expression of the membrane receptor TREM2 in microglia, which is closely related to phagocytosis, we observed that depletion of microglia exacerbated neurological symptoms, blood-brain barrier breakdown, and peripheral lymphocyte infiltration. Taken together, we revealed the dual role of microglia in protecting the host and neurons from PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Camundongos , Animais , Suínos , Microglia , Encéfalo , Imunidade
3.
Vet Res Commun ; 47(4): 1949-1962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37266866

RESUMO

The thymus, the central immune organ in mammals, plays an important role in immune defense. Porcine reproductive and respiratory syndrome virus (PRRSV) infection in piglets can cause thymus injury and immunosuppression. However, the mechanisms of thymus injury remain unknown. This study was aimed at investigating the specific manifestations of thymus injury through the construction of a PRRSV-infected piglet model and histopathological observation. In this study, fourteen 40-day-old PRRSV-free piglets were randomly divided into two groups, eleven of which were intramuscularly injected with 3 mL of PRRSV WUH3 virus suspension (106 PFU /mL) in the infection group, and three of which were sham-inoculated with 3 mL of RPMI-1640 medium in the control group. Clinical necropsy and samples collection were performed on day 8 after artificial infection. With the Illumina platform, the transcriptomes of piglet thymus tissues from infected and control piglets were sequenced to explore the relationships of differentially expressed genes (DEGs) and signaling pathways with thymus injury. The immune organs of PRRSV-infected piglets were severely damaged. The histopathological findings in the thymus indicated that PRRSV infection was associated with a large decrease in lymphocytes, cell necrosis and cell apoptosis; an increase in blood vessels and macrophages; thymic corpuscle hyperplasia; and interstitial widening of the thymic lobules. The transcriptomic analysis results revealed that the Gene Ontology functions of DEGs were enriched primarily in biological processes such as angiogenesis, regulation of angiogenesis and positive regulation of cell migration. Moreover, greater numbers of blood vessels and macrophages were observed in the thymus in PRRSV-infected than control piglets. KEGG pathway enrichment analysis revealed that the DEGs were significantly enriched in the Toll-like receptor signaling pathway, chemokine signaling pathway, IL-17 signaling pathway and TNF signaling pathway. The expression of TLR8, IRF5, the chemokines CCL2, CCL3L1 and CCL5; and their receptors CCR1, CCR2 and CCR5 was significantly up-regulated in PRRSV infection, thus suggesting that these cytokines were associated with the pathological processes of thymus injury.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/genética , Transcriptoma , Timo/patologia , Apoptose , Mamíferos , Doenças dos Suínos/genética
4.
Viruses ; 15(5)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243294

RESUMO

Enterococcus faecalis is a potential animal and human pathogen. Improper use of antibiotics encourages resistance. Bacteriophages and their derivatives are promising for treating drug-resistant bacterial infections. In this study, phylogenetic and electron microscopy analyses of phage vB_EfaS_WH1 (WH1) isolated from chicken feces revealed it to be a novel phage in the family Siphoviridae. WH1 showed good pH stability (4-11), temperature tolerance (4-60 °C), and broad E. faecalis host range (60% of isolates). Genome sequencing revealed a 56,357 bp double-stranded DNA genome with a G+C content of 39.21%. WH1 effectively destroyed E. faecalis EF01 biofilms, even at low concentrations. When WH1 was applied at 1 × 105 to 1 × 109 PFU/g to chicken breast samples stored at 4 °C, surface growing E. faecalis were appreciably eradicated after 24 h. The phage WH1 showed good antibacterial activity, which could be used as a potential biocontrol agent to reduce the formation of E. faecalis biofilm, and could also be used as an alternative for the control of E. faecalis in chicken products.


Assuntos
Bacteriófagos , Humanos , Animais , Bacteriófagos/genética , Enterococcus faecalis , Galinhas/genética , Filogenia , Biofilmes , Genoma Viral , Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...