Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172493, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621533

RESUMO

Manganese (Mn) is a vital micronutrient and participates in multiple biochemical reactions and enzyme catalytic activities. Its cycling is tightly connected with iron (Fe) and nitrogen (N). Although coastal sediments are recognized as an important source of dissolved Mn to marine waters, this contribution remains inadequately quantified. In the summer of 2019 and 2020, we investigated benthic fluxes of dissolved Mn, Fe and ammonia (NH4+) in the Changjiang Estuary and East China Sea shelf using the 224Ra/228Th disequilibrium approach. Our results showed that the availability of reactive Mn oxides (MnD) played a crucial role in sedimentary Mn regeneration, as revealed by the positive correlation (r = 0.75, P < 0.05) between Mn fluxes and MnD contents. In addition, the positive correlation (r = 0.80, P < 0.01) between the decomposition rates of sedimentary organic matter (NH4+ flux) and Mn fluxes suggested that the reduction of MnD was mainly driven by the organic carbon oxidation. Furthermore, NH4+ and Mn fluxes exhibited an exponential increase against the product of dissolved oxygen concentration (DO) and the amplification factor of sediment surface area (ξ). In this context, ξ represents the rate of bottom water DO pumped into the sediment via physical reworking and bio-irrigation. In contrast to the most efficient Fe released from sediment overlain by hypoxic waters (DO <62.5 µM), the maximum Mn flux (63.5 ± 9.4 mmol m-2 d-1) was observed at sediment with oxygenated bottom waters (DO = 158 µM). This implies that the regeneration of Mn was associated with a more permissive redox state compared to that of Fe. We further demonstrated that Mn flux was 1-2 orders of magnitude higher than those estimated through traditional methods. Therefore, coastal sediments may contribute more Mn to ocean waters than previously thought. The precise estimation of Mn release from coastal sediments holds critical significance for research on the global Mn budget.

2.
Sci Total Environ ; 921: 170935, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382612

RESUMO

In coastal sediments characterized by substantial terrestrial input, the Redfield ratio may not be adequate to determine whether phosphorus (P) is preferentially remineralized relative to carbon (C). Employing a two end-member δ13C mixing model, we observed a gradual decrease in the fraction of terrestrial organic matter as the distance from the river mouth increased. Consequently, the C/P ratio of sedimentary organic matter before early diagenetic alteration (Cu/Pu) decreased from 213 ± 26 to 126 ± 4. In contrast, the C/P ratio of sedimentary organic matter after early diagenetic alteration (Corg/Porg) increased from 208 ± 32 to 265 ± 23. The deviation of Corg/Porg ratios from Cu/Pu ratios suggests that P was preferentially remineralized from organic matter relative to C. Moreover, the degree of preferential remineralization (DPR) of P, represented by (Corg/Porg)/(Cu/Pu), increased with the distance from the river mouth, suggesting a connection to cross-shelf transport. Besides preferential P remineralization, the control mechanisms for P regeneration from sediments strongly depend on the dissolved oxygen (DO) levels of bottom water. Under oxygenated bottom water (DO >120 µM), the precipitation of Fe oxides reduced benthic DIP flux, resulting in a C/P ratio in flux well above the Cu/Pu ratio (1813 ± 725 vs. 213 ± 26). Conversely, when bottom water DO was low (DO<100 µM), the dissolution of Fe oxides and preferential P remineralization increased DIP fluxes, but the precipitation of authigenic apatite suppressed DIP fluxes, leading to C/P ratios in flux approximating Cu/Pu ratios (129 ± 35 vs. 158 ± 10 and 200 ± 82 vs. 141 ± 7). In a moderate redox state (100 < DO <120 µM), preferential P remineralization and the dissolution of Fe oxides increased DIP fluxes, resulting in C/P ratios in flux below Cu/Pu ratios (29 ± 8 vs. 131 ± 5 and 15 ± 6 vs. 126 ± 4).

4.
Front Cardiovasc Med ; 10: 1250404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116537

RESUMO

Background: To assess the relationship of genetically predicted sexual behavior (age at first sex (AFS) and the number of sexual partners (NSP)) on cardiovascular diseases (CVDs). Methods and results: We performed two-sample Mendelian randomization (MR) with publicly available datasets from the UK Biobank and FinnGen Study, and analyzed genome-wide association results for sexual behaviors and twelve types of CVDs. The univariable MR method provided a total effect of AFS and NSP on CVDs, and showed evidence that early AFS rather than NSP was associated with CVDs, including angina pectoris (AP), atrial fibrillation and flutter (AFF), coronary atherosclerosis (CAS), deep vein thrombosis of the lower extremity (DVT-LE), heart failure (HF), hypertension (HTN), ischaemic stroke (IS), and myocardial infarction (MI). Given sex as a social determinant of CVD risk, we used gender-stratified SNPs to investigate gender differences in the development of CVDs. These results showed a stronger causal relationship of AFS on CVDs in females than in males. Further multivariable MR analyses indicated a direct effect after accounting for insomnia, number of days of vigorous physical activity 10 + minutes (VPA 10 + min), and time spent watching television (TV). Two-step MR demonstrated these three risk factors act as a mediator in AFS associated AP/HTN/HF. Conclusions: We provide evidence that early AFS increased the risk of CVDs. These associations may be partly caused by VPA 10 + min, insomnia, and the time spent on TV. The causality of AFS on CVDs in females was stronger than in males. Conversely, genetically predicted NSP was not associated with CVDs.

5.
Front Immunol ; 14: 1288632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022504

RESUMO

Background: Although numerous studies demonstrated a link between plasma homocysteine (Hcy) levels and psoriasis, there still exists a certain level of controversy. Therefore, we conducted a Mendelian randomization study to investigate whether homocysteine plays a causative role in the development or exacerbation of psoriasis. Methods: A two-sample Mendelian randomization (MR) analysis was conducted. Summary-level data for psoriasis were acquired from the latest R9 release results from the FinnGen consortium (9,267 cases and 364,071 controls). Single nucleotide polymorphisms (SNPs) robustly linked with plasma Hcy levels at the genome-wide significance threshold (p < 5 × 10-8) (18 SNPs) were recognized from the genome-wide meta-analysis on total Hcy concentrations (n = 44,147 participants) in individuals of European ancestry. MR analyses were performed utilizing the random-effect inverse variance-weighted (IVW), weighted median, and MR-Egger regression methods to estimate the associations between the ultimately filtrated SNPs and psoriasis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. Results: MR analyses revealed no causal effects of plasma Hcy levels on psoriasis [IVW: odds ratio (OR) = 0.995 (0.863-1.146), p = 0.941; weighed median method: OR = 0.985 (0.834-1.164), p = 0.862; MR-Egger regression method: OR = 0.959 (0.704-1.305), p = 0.795]. The sensitivity analyses displayed no evidence of heterogeneity and directional pleiotropy, and the causal estimates of Hcy levels were not influenced by any individual SNP. Conclusion: Our study findings did not demonstrate a causal effect of genetically determined circulating Hcy levels on psoriasis.


Assuntos
Análise da Randomização Mendeliana , Psoríase , Humanos , Causalidade , Homocisteína , Razão de Chances , Psoríase/epidemiologia , Psoríase/genética
7.
Nat Commun ; 13(1): 4306, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879314

RESUMO

The rapid development of high-throughput single-cell RNA sequencing technology offers a good opportunity to dissect cell heterogeneity of animals. A large number of organism-wide single-cell atlases have been constructed for vertebrates such as Homo sapiens, Macaca fascicularis, Mus musculus and Danio rerio. However, an intermediate taxon that links mammals to vertebrates of more ancient origin is still lacking. Here, we construct the first Xenopus cell landscape to date, including larval and adult organs. Common cell lineage-specific transcription factors have been identified in vertebrates, including fish, amphibians and mammals. The comparison of larval and adult erythrocytes identifies stage-specific hemoglobin subtypes, as well as a common type of cluster containing both larval and adult hemoglobin, mainly at NF59. In addition, cell lineages originating from all three layers exhibits both antigen processing and presentation during metamorphosis, indicating a common regulatory mechanism during metamorphosis. Overall, our study provides a large-scale resource for research on Xenopus metamorphosis and adult organs.


Assuntos
Eritrócitos , Metamorfose Biológica , Animais , Hemoglobinas/metabolismo , Larva/metabolismo , Mamíferos , Camundongos , Xenopus laevis/genética , Peixe-Zebra
8.
Biol Reprod ; 107(1): 148-156, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35774031

RESUMO

The prevalence of gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig cells (FLCs) and Sertoli cells (SCs). Pregnant mice were treated on gestational days 6.5 and 12.5 with streptozotocin (100 mg/kg) or vehicle (sodium citrate buffer). Leydig cell and SC development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of desert hedgehog in SCs of testes of male offspring. FLC number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/ß-catenin signaling was activated and Gsk3ß signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.


Assuntos
Diabetes Gestacional , Testículo , Animais , Diabetes Gestacional/metabolismo , Feminino , Desenvolvimento Fetal , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Gravidez , Células de Sertoli/metabolismo , Testículo/metabolismo , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...