Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18263, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880324

RESUMO

Image perturbation is a promising technique to assess radiomic feature repeatability, but whether it can achieve the same effect as test-retest imaging on model reliability is unknown. This study aimed to compare radiomic model reliability based on repeatable features determined by the two methods using four different classifiers. A 191-patient public breast cancer dataset with 71 test-retest scans was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion coefficient images and manual tumor segmentations for radiomic feature extraction. Random translations, rotations, and contour randomizations were performed on the training images, and intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated model reliability in both internal generalizability and robustness, which were quantified by training and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC thresholds, but it dropped significantly at ICC = 0.95 for the test-retest model. Similar optimal reliability can be achieved with testing AUC = 0.7-0.8 and prediction ICC > 0.9 at the ICC threshold of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any radiomic study when test-retest is not feasible, but care should be taken when deciding the optimal feature repeatability criteria.


Assuntos
Neoplasias da Mama , Processamento de Imagem Assistida por Computador , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética , Neoplasias da Mama/diagnóstico por imagem
2.
J Inflamm Res ; 15: 953-964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35177922

RESUMO

Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.

3.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612236

RESUMO

This study aims to investigate the feasibility of improving the prognosis stratification of the N staging system of Nasopharyngeal Carcinoma (NPC) from quantitative spatial characterizations of metastatic lymph node (LN) for NPC in a multi-institutional setting. A total of 194 and 284 NPC patients were included from two local hospitals as the discovery and validation cohort. Spatial relationships between LN and the surrounding organs were quantified by both distance and angle histograms, followed by principal component analysis. Independent prognostic factors were identified and combined with the N stage into a new prognostic index by univariate and multivariate Cox regressions on disease-free survival (DFS). The new three-class risk stratification based on the constructed prognostic index demonstrated superior cross-institutional performance in DFS. The hazard ratios of the high-risk to low-risk group were 9.07 (p < 0.001) and 4.02 (p < 0.001) on training and validation, respectively, compared with 5.19 (p < 0.001) and 1.82 (p = 0.171) of N3 to N1. Our spatial characterizations of lymph node tumor anatomy improved the existing N-stage in NPC prognosis. Our quantitative approach may facilitate the discovery of new anatomical characteristics to improve patient staging in other diseases.

4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 864-869, 2018 12 25.
Artigo em Chinês | MEDLINE | ID: mdl-30583310

RESUMO

In sonoporation, the cell membrane is broken-up temporarily by ultrasound mediated microbubbles, which is promoting drug or gene into the cell. In current literatures, there are numerous studies of single microbubble dynamics in sonoporation. However till now, little studies have been focused on the sonoporation incidence caused by more than one microbubble. In this article, the dynamic model of two adjacent microbubbles in stable cavitation has been introduced. By the model, the forces including secondary Bjerknes force on cell membrane given by microbubbles and their effects on sonoporation have been numerically studied. According to the experimental parameters, we numerically studied (1) effects of the ultrasound and microbubble parameters on the secondary Bjerknes forces; (2) the forces exerted on cell membrane by microbubble, including the secondary Bjerknes force; (3) the sonoporation possibility caused by those forces produced by microbubble. In this article, the ultrasound and microbubbles' parameters range were found to produce sonoporation by two adjacent microbubbles. Furthermore, it is the first time to found that the microbubbles' parameters are more important than ultrasound parameters on sonoporation.

5.
Nanoscale Res Lett ; 11(1): 167, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27013227

RESUMO

In the article, a dual-quantum-dots-labeled (dual-QDs-labeled) lateral flow strip (LFS) method was developed for the simultaneous and rapid quantitative detection of procalcitonin (PCT) and C-reactive protein (CRP) in the blood. Two QD-antibody conjugates with different fluorescence emission spectra were produced and sprayed on the LFS to capture PCT and CRP in the blood. Furthermore, a double antibody sandwich method for PCT and, meanwhile, a competitive inhibition method for CRP were employed in the LFS. For PCT and CRP in serum assayed by the dual-QDs-labeled LFS, their detection sensitivities reached 0.1 and 1 ng/mL, respectively, and their linear quantitative detection ranges were from 0.3 to 200 ng/mL and from 50 to 250 µg/mL, respectively. There was little evidence that the PCT and CRP assays would be interfered with each other. The correlations for testing CRP and PCT in clinical samples were 99.75 and 97.02 %, respectively, between the dual-QDs-labeled LFS we developed and commercial methods. The rapid quantification of PCT and CRP on dual-QDs-labeled LFS is of great clinical value to distinguish inflammation, bacterial infection, or viral infection and to provide guidance for the use of antibiotics or other medicines.

6.
Ultrasonics ; 61: 136-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957067

RESUMO

Sonoporation is a promising technology for promoting the transfer of drug or gene into cells using ultrasound-mediated microbubbles that transiently break up the cell membrane. In this article, a model is established to analyze the dynamics of ultrasound-mediated microbubble near the cell membrane, which may be especially useful for understanding the mechanisms of sonoporation. In the model, the velocity potential of fluid on the microbubble surface and on the cell membrane is obtained by the unsteady Bernoulli equations, and it is solved by using the boundary integral equations. By numerically analyzing the model, the typical microbubble dynamics near the cell membrane are enumerated, which may be mainly governed by mechanical index. The model also established the connections among the parameters of ultrasound exposure, microbubble characteristics, and cell membrane properties in sonoporation.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Microbolhas , Modelos Teóricos , Sonicação
7.
Mater Sci Eng C Mater Biol Appl ; 47: 123-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492180

RESUMO

The goal of this study was to investigate the mechanical and biological properties of oxidized keratin materials, which were obtained by using buffalo horns to oxidize. It could provide a way to evaluate their potential for clinical translatability. The characterization on their composition, mechanical properties, and biological responses was performed. It is found that the oxidation process could lead the disulfide bond to break down and then to form sulfonic acid, or even make partial peptide chain to be fragment for the new modification of amino acid. Hence the oxidized horn keratins have lower thermal stability and hydrolytic stability in comparison with horn keratin, but the degradation products of oxidized horn keratins have no significant difference. In addition, the mechanical properties of oxidized horn keratins are poorer than that of horn keratin, but the oxidized horn keratins still have disulfide bonds to form a three-dimensional structure, which benefits for their mechanical properties. The fracture toughness of oxidized horn keratins increases with the increase in the degree of oxidation. After oxidation, the oxidized horn keratins have lower cytotoxicity and lower hemolysis ratio. Moreover, when the oxidized horn keratins, as well as different concentration of degradation products of oxidized horn keratins, are directly in contact with platelet-rich plasma, platelets are not activated. It suggests that the oxidized horn keratins have good hemocompatibility, without triggering blood thrombosis. The implantation experiment in vivo also demonstrates that the oxidized horn keratins are compatible with the tissue, because there are minimal fibrous capsule and less of infiltration of host cells, without causing serious inflammation. In summary, the oxidized horn keratins can act as implanted biomaterial devices that are directly in contact with blood and tissue.


Assuntos
Queratinas/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Búfalos , Varredura Diferencial de Calorimetria , Adesão Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Fibrinogênio/metabolismo , Hidrólise , Queratinas/química , Oxirredução , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
8.
Mater Sci Eng C Mater Biol Appl ; 33(8): 5036-43, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094221

RESUMO

The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods.


Assuntos
Cornos/química , Animais , Búfalos , Bovinos , Força Compressiva , Módulo de Elasticidade , Dureza , Cornos/metabolismo , Queratinas/metabolismo , Microscopia Eletrônica de Varredura , Ovinos , Análise Espectral Raman , Resistência à Tração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...