Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38256972

RESUMO

In this paper, the low-velocity impact behavior and damage modes of carbon/glass-hybrid fiber-reinforced magnesium alloy laminates (FMLs-H) and pure carbon-fiber-reinforced magnesium alloy laminates (FMLs-C) are investigated using experimental, theoretical modeling, and numerical simulation methods. Low-velocity impact tests were conducted at incident energies of 20 J, 40 J, and 60 J using a drop-weight impact tester, and the load-displacement curves and energy-time curves of the FMLs were recorded and plotted. The results showed that compared with FMLs-C, the stiffness of FMLs-H was slightly reduced, but the peak load and energy absorption were both greatly improved. Finally, a finite element model based on the Abaqus-VUMAT subroutine was developed to simulate the experimental results, and the damage modes of the metal layer, fiber layer, and interlayer were observed and analyzed. The experimental results are in good agreement with the finite element analysis results. The damage mechanisms of two kinds of FMLs under low-velocity impacts are discussed, providing a reference for the design and application of laminates.

2.
Materials (Basel) ; 16(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629864

RESUMO

In this paper, the tensile mechanical behavior and progressive damage morphology of glass-fiber-reinforced magnesium alloy laminate for different numbers of holes in a temperature range of 25-180 °C were investigated. In addition, based on extensive tensile tests, the tensile mechanical behavior and microscopic damage morphology of porous-glass-fiber-reinforced magnesium alloy laminates at different temperatures were observed by finite element simulation and scanning electron microscopy (SEM). Finally, the numerical simulation and experimental results were in good accordance with the prediction of mechanical properties and fracture damage patterns of the laminates, the average difference between the residual strength values of the specimens at ambient temperature was 5.57%, and the stress-strain curves were in good agreement. The experimental and finite element analysis results showed that the damaged area of the bonded layer tended to expand with the increase in the number of holes, which has a lesser effect on the ultimate tensile strength. As the temperature increased, the specimens changed from obvious fiber breakage (pull-out) and the resin matrix damage mode to matrix softening damage and interfacial delamination fracture damage. As the testing temperature of the specimens increased from 25 °C to 180 °C, the tensile strength of the specimens decreased by an average of 51.59%, while the tensile strength of the specimens showed a nonlinear decreasing trend. The damage mechanism of porous-glass-fiber-reinforced magnesium alloy laminates at different temperatures is discussed in this paper, which can provide a reference for engineering applications and design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...