Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.848
Filtrar
1.
Chin J Dent Res ; 27(2): 143-149, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38953479

RESUMO

OBJECTIVE: To investigate the clinical effect of implant-assisted dental intentional replantation (IR) for the treatment of "drifted" anterior periodontally hopeless teeth (PHT). METHODS: The present authors recruited 22 patients with stage III/IV periodontitis who suffered drifting of the maxillary anterior teeth, with a total of 25 teeth. The PHT were extracted for in vitro root canal treatment (RCT). The root surface was smoothed and the shape was trimmed, and the alveolar socket was scratched. The dental implant system was used to prepare the alveolar socket according to the direction, depth and shape of the tooth implantation. The PHT were reimplanted into the prepared alveolar socket. The periodontal indicators were analysed statistically before and after surgery. RESULT: Twenty-two patients who completed the full course of treatment, with a total of 25 PHT, had a successful retention rate of 88%. Mean periodontal probing depth (PPD) decreased by 2.880 ± 0.556 mm and 3.390 ± 0.634 mm at 6 months and 1 year, respectively, and clinical attachment loss (CAL) decreased by 2.600 ± 0.622 mm and 2.959 ± 0.731 mm at the same time points, respectively, showing significant improvement (P < 0.05). CONCLUSION: Dental implant system-assisted IR can effectively preserve "drifted" natural PHT in patients with stage III/IV periodontitis.


Assuntos
Reimplante Dentário , Humanos , Reimplante Dentário/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Periodontite/cirurgia , Implantes Dentários , Tratamento do Canal Radicular/métodos , Alvéolo Dental/cirurgia , Maxila/cirurgia , Resultado do Tratamento , Incisivo
2.
Theriogenology ; 226: 286-293, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38954997

RESUMO

HT-2 toxin is a type of mycotoxin which is shown to affect gastric and intestinal lesions, hematopoietic and immunosuppressive effects, anorexia, lethargy, nausea. Recently, emerging evidences indicate that HT-2 also disturbs the reproductive system. In this study, we investigated the impact of HT-2 toxin exposure on the organelles of porcine oocytes. Our results found that the abnormal distribution of endoplasmic reticulum increased after HT-2 treatment, with the perturbation of ribosome protein RPS3 and GRP78 expression; Golgi apparatus showed diffused localization pattern and GM130 localization was also impaired, thereby affecting the Rab10-based vesicular transport; Due to the impairment of ribosomes, ER, and Golgi apparatus, the protein supply to lysosomes was hindered, resulting in lysosomal damage, which further disrupted the LC3-based autophagy. Moreover, the results indicated that the function and distribution of mitochondria were also affected by HT-2 toxin, showing with fragments of mitochondria, decreased TMRE and ATP level. Taken together, our study suggested that HT-2 toxin exposure induces damage to the organelles for endomembrane system, which further inhibited the meiotic maturation of porcine oocytes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38970420

RESUMO

SIGNIFICANCE: Herbal medicines demonstrate clinical promise for cancer treatment. Protein post translational modifications (PTMs) regulate tumorigenesis and cancer progression. While PTMs contributing to cancer are well-studied, the precise mechanisms and defined targets of herbal medicines on PTM-associated carcinogenesis remain unclear. Hence, comprehensively understanding how PTMs regulate cancer hallmarks is crucial to elucidate the pharmacological mechanisms of herbal medicines for cancer treatment. RECENT ADVANCES: Advanced development in highly sensitive mass spectrometry (MS)-based techniques has helped utilize PTM-focused studies on cancers. Accumulating evidence has been achieved in laboratory to ascertain the biological mechanism of herbal medicines in cancer therapy. Implication of the strong association between cancer and PTM makes new perspective to comprehend the intricate dialogues between herbal medicines and cellular contexts. CRITICAL ISSUES: Complex components of herbal medicines limit the benefits of herbal-based cancer therapies. In this review, we address that PTMs add a layer of proteomic complexity to the cancer through altering the protein structure, expression, function, and localization. Elaborating PTM implicated in cell signaling, apoptosis and transcriptional regulation function, and the possible cellular signaling, have provided important information about the mechanism of many herbal therapies. Continued optimization of proteomic strategies for PTM analysis in herbal medicines are also discussed. FUTURE DIRECTIONS: Rigorous evaluations of herbal medicines and the chemoproteomic strategies are necessary to explore the aberrant regulation of PTM dynamics contributed to the cancer development and herbal associated pharmacological issues. These efforts will eventually help develop more herbal drugs as modern therapeutic agents.

4.
Acta Trop ; 257: 107302, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959992

RESUMO

Toxoplasma gondii is an important protozoan pathogen, which can cause severe diseases in the newborns and immunocompromised individuals. Developing an effective vaccine against Toxoplasma infection is a critically important global health priority. Immunofluorescence staining analysis revealed that TgSAG2 and TgSRS2 are membrane associated and displayed on the surface of the parasite. Immunizations with pBud-SAG2, pBud-SRS2 and pBud-SAG2-SRS2 DNA vaccines significantly increased the production of specific IgG antibodies. Immunization with pBud-SAG2-SRS2 elicited cellular immune response with higher concentrations of IFN-γ and IL-4 compared to the control group. Antigen-specific lymphocyte proliferations in the pBud-SRS2 and pBud-SAG2-SRS2 groups were significantly higher compared to that in the control group. Furthermore, 30 % of mice immunized with pBud-SAG2-SRS2 survived after the challenge infection with virulent T. gondii RH tachyzoites. This study revealed that immunization with pBud-SAG2-SRS2 induced potent immune responses, and has the potential as a promising vaccine candidate for the control of T. gondii infection.

6.
Biomed Pharmacother ; 177: 116989, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959609

RESUMO

The mitochondrial unfolded protein response (UPRmt) is a cytoprotective response in response to cellular stress that is activated in response to mitochondrial stress to maintain intra-protein homeostasis, thereby protecting the cell from a variety of stimuli. The activation of this response has been linked to cardiovascular diseases. Here, we reviewed the current understanding of UPRmt and discussed its specific molecular mechanism, mainly in mammals, as well as addressing its protective role against cardiovascular diseases, so as to provide direction for further research on UPRmt and therapies targeting cardiovascular diseases in the future.

7.
Food Chem ; 459: 140339, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986206

RESUMO

A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 µs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.

8.
J Ethnopharmacol ; 334: 118534, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herb pairs are the most basic and compressed examples of Chinese herbal combinations and can be used to effectively explain the fundamental concepts of traditional Chinese medicine prescriptions. These pairings have gained significant interest due to their subtle therapeutic benefits, minimal side effects, and efficacy in treating complicated chronic conditions. The Banxia-Xiakucao Chinese herb pair (BXHP) consists of Pinellia ternata (Thunb.) Breit. (Banxia) and Prunella vulgaris L. (Xiakucao). This formula was documented in The Medical Classic of the Yellow Emperor approximately 2000 years ago,and clinical research has demonstrated that BXHP effectively treats insomnia. AIM OF THE STUDY: This study aimed to evaluate the efficacy and therapeutic mechanism of the BXHP through a comprehensive strategy involving network pharmacology, molecular docking, transcriptomics, and molecular biology experimental validation. MATERIALS AND METHODS: The composition of BXHP was characterized using the UPLC-Q-TOF-MS. The active compounds were screened to find drug-likeness compounds by analyzing the ADME data. To predict the molecular mechanism of BXHP in sleep deprivation (SD) by network pharmacology and molecular docking. We established a rat model of SD and the in vivo efficacy of BXHP was verified through the pentobarbital sodium righting reflex test, behavioral assays, enzyme-linked immunosorbent assay, transmission electron microscopy, HE staining, and Nissl staining, and the underlying molecular mechanism of BXHP in SD was revealed through transcriptomic and bioinformatic analyses in conjunction with quantitative real-time PCR, Western blot, and immunofluorescence staining. RESULTS: In the present study, we showed for the first time that BXHP reduced sleep latency, prolongs sleep duration, and improves anxiety; lowered serum CORT, IL6, TNF-α and MDA levels; decreased hypothalamic Glu levels; and elevated hypothalamic GABA and 5-HT levels in SD rats. We found 16 active compounds that acted on 583 targets, 145 of which are related to SD. By modularly dissecting the PPI network, we discovered three critical targets, Akt1, CREB1, and PRKACA, all of which play important roles in the effects of BXHP on SD. Molecular docking resulted in the identification of 16 active compounds that strongly bind to key targets. The results of GO and KEGG enrichment analyses of network pharmacology and transcriptomics focused on both the regulation of circadian rhythm and the cAMP signaling pathway, which strongly demonstrated that BXHP affects SD via the cAMP-PKA-CREB-Circadian rhythm pathway. Molecular biology experiments verified this hypothesis. Following BXHP administration, PKA and CREB phosphorylation levels were elevated in SD rats, the cAMP-PKA-CREB signaling pathway was activated, the expression levels of the biological clock genes CLOCK, p-BMAL1/BMAL1, and PER3 were increased, and the rhythmicity of the biological clock was improved. CONCLUSIONS: The active compounds in BXHP can activate the cAMP-PKA-CREB-Circadian rhythm pathway, improve the rhythmicity of the biological clock, promote sleep and ameliorate anxiety, which suggests that BXHP improves SD through a multicomponent, multitarget, multipathway mechanism. This study is important for the development of herbal medicines and clinical therapies for improving sleep deprivation.

9.
Fungal Biol Biotechnol ; 11(1): 7, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987829

RESUMO

Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.

10.
Chem Commun (Camb) ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980122

RESUMO

A series of metalloligands bearing homoleptic 2,2':6',2''-terpyridine (tpy)-CdII complexes has been successfully synthesized. The formation of ML1 was accomplished through a sequence of Suzuki-Miyaura coupling and complexation reactions, offering an alternative method to produce tpy-based metalloligands under relatively mild conditions. Moreover, the metallomacrocycle C1 and metallocatenane C2 were self-assembled from heteroleptic complexation reactions involving ML1 and suitable counterparts.

11.
Ecotoxicol Environ Saf ; 282: 116708, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018736

RESUMO

Previous studies reported that hemoprotein CYP450 catalyzed triclosan coupling is an "uncommon" metabolic pathway that may enhance toxicity, raising concerns about its environmental and health impacts. Hemoglobin, a notable hemoprotein, can catalyze endogenous phenolic amino acid tyrosine coupling reactions. Our study explored the feasibility of these coupling reactions for exogenous phenolic pollutants in plasma. Both hemoglobin and hemin were found to catalyze triclosan coupling in the presence of H2O2. This resulted in the formation of five diTCS-2 H, two diTCS-Cl-3 H, and twelve triTCS-4 H in phosphate buffer, with a total of nineteen triclosan coupling products monitored using LC-QTOF. In plasma, five diTCS-2 H, two diTCS-Cl-3 H, and two triTCS-4 H were detected in hemoglobin-catalyzed reactions. Hemin showed a weaker catalytic effect on triclosan transformation compared to hemoglobin, likely due to hemin dimerization and oxidative degradation by H2O2, which limits its catalytic efficiency. Triclosan transformation in the human plasma-like medium still occurs with high H2O2, despite the presence of antioxidant proteins that typically inhibit such transformations. In plasma, free H2O2 was depleted within 40 minutes when 800 µM H2O2 was added, suggesting a rapid consumption of H2O2 in these reactions. Antioxidative species, or hemoglobin/hemin scavengers such as bovine serum albumin, may inhibit but not completely terminate the triclosan coupling reactions. Previous studies reported that diTCS-2 H showed higher hydrophobicity and greater endocrine-disrupting effects compared to triclosan, which further underscores the potential health risks. This study indicates that hemoglobin and heme in human plasma might significantly contribute to phenolic coupling reactions, potentially increasing health risks.

12.
Clin Breast Cancer ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030158

RESUMO

OBJECTIVES: To develop a prediction model based on spectral computed tomography (CT) to evaluate axillary lymph node (ALN) with macrometastases in clinical T1/2N0 invasive breast cancer. METHODS: A total of 217 clinical T1/2N0 invasive breast cancer patients who underwent spectral CT scans were retrospectively enrolled and categorized into a training cohort (n = 151) and validation cohort (n = 66). These patients were classified into ALN nonmacrometastases (stage pN0 or pN0 [i+] or pN1mi) and ALN macrometastases (stage pN1-3) subgroups. The morphologic criteria and quantitative spectral CT parameters of the most suspicious ALN were measured and compared. Least absolute shrinkage and selection operator (Lasso) was used to screen predictive indicators to build a logistic model. The receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were used to evaluate the models. RESULTS: The combined arterial-venous phase spectral CT model yielded the best diagnostic performance in discrimination of ALN nonmacrometastases and ALN macrometastases with the highest AUC (0.963 in the training cohort and 0.945 in validation cohorts). Among single phase spectral CT models, the venous phase spectral CT model showed the best performance (AUC = 0.960 in the training cohort and 0.940 in validation cohorts). There was no significant difference in AUCs among the 3 models (DeLong test, P > .05 for each comparison). CONCLUSION: A Lasso-logistic model that combined morphologic features and quantitative spectral CT parameters based on contrast-enhanced spectral imaging potentially be used as a noninvasive tool for individual preoperative prediction of ALN status in clinical T1/2N0 invasive breast cancers.

13.
Int Immunopharmacol ; 139: 112668, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39008938

RESUMO

Sepsis-associated acute kidney injury (SA-AKI) is one of common critical illnesses with high morbidity and mortality. At present, effective therapeutic drugs for SA-AKI are remain lacking. SKLB023 is a synthetic small-molecule compound which exerts potent anti-inflammatory effects in our previous studies. Here, this study aimed to characterize the protective effect of SKLB023 on SA-AKI and explore its underlying mechanism. The SA-AKI experimental models have been established by cecum ligation/puncture (CLP) and lipopolysaccharide (LPS) injection in male C57BL/6J mice. SKLB023 was administered by gavage (50 or 25 mg/kg in CLP model and 50 mg/kg in LPS model) daily 3 days in advance and 30 min earlier on the day of modeling. Our results confirmed SKLB023 treatment could improve the survival of SA-AKI mice and ameliorate renal pathological injury, inflammation, and apoptosis in the two types of septic AKI mice. Mechanically, SKLB023 deceased the expression of TLR4 in LPS-triggered renal tubular epithelial cells, and inhibited the activation of downstream pathways including NF-κB and MAPK pathways. Our study suggested that SKLB023 is expected to be a potential drug for the prevention and treatment of septic AKI.

14.
Mar Genomics ; 76: 101124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009498

RESUMO

Microorganisms living with higher organisms are valuable sources of bioactive substances like antibiotics, which could assist them competing for more and better nutrients or space. Here, we focused on a marine animal-associated bacterium, 'Aliisedimentitalea scapharcae' KCTC 42119T, which was isolated from ark shell collected from Gang-Jin bay of South Korea. We evaluated its biosynthetic potentials of medicinal secondary metabolites by de novo genome sequencing. The complete genome of strain KCTC 42119T sequenced is 5,083,900 bp and is comprised of one circular chromosome and four circular plasmids. Functional genome analysis by antiSMASH v7.1.0 showed that there are nine biosynthetic gene clusters encoded on the chromosome. The annotated secondary metabolites include antibiotic corynecin, cytoprotective ectoine and antineoplastic ET-743 (Yondelis), which suggested strain KCTC 42119T possesses potentials to synthesize a series of secondary metabolites of pharmaceutical utility. Genome analysis of 'A. scapharcae' also provides more insights into mining bioactive substances from animal-associated microorganisms.


Assuntos
Genoma Bacteriano , Animais , República da Coreia , Metabolismo Secundário/genética
15.
Mol Neurobiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976130

RESUMO

Protein phosphatase 2A (PP2A) is an abundant heterotrimeric holoenzyme in eukaryotic cells coordinating with specific kinases to regulate spatial-temporal protein dephosphorylation in various biological processes. However, the function of PP2A in cortical neurogenesis remains largely unknown. Here, we report that neuronal-specific deletion of Pp2acα in mice displayed microcephaly, with significantly smaller brains and defective learning and memory ability. Mechanistically, neuronal Pp2acα deficiency resulted in elevated endogenous DNA damage and activation of ATR/CHK1 signaling. It was further induced by the loss of direct interaction between PP2AC and ATR as well as the function of PP2AC to dephosphorylate ATR. Importantly, ATR/CHK1 signaling dysregulation altered both the expression and activity of several critical downstream factors including P53, P21, Bcl2, and Bax, which led to decreased proliferation of cortical progenitor cells and increased apoptosis in developing cortical neurons. Taken together, our results indicate an essential function of PP2ACα in endogenous DNA damage response-mediated ATR signaling during neurogenesis, and defective PP2ACα in neurons contributes to microcephaly.

16.
Front Med (Lausanne) ; 11: 1406492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978779

RESUMO

Objective: Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy, which is increasing annually. GDM can cause serious harm to both the mother and the offspring. However, the clinical indicators that predict pregnancy outcomes with GDM remain limited. Methods: This study included 3,229 pregnancies. Inflammatory markers were defective in the mother's peripheral blood. Also, the Chi-square test, logistic regression analyses and Spearman rank correlation coefficient were performed to evaluate inflammatory markers with pregnancy outcomes. The association between inflammatory markers and pregnancy outcomes was analyzed. The optimal cut-off values of inflammatory markers were calculated. Results: Finally, 3,229 women were included. 1852 (57.36%) participants suffered good pregnancy outcomes. This study revealed that the maternal age, the baseline BMI (kg/m2), the times of parity, and the level of lymphocyte, SII and SIRI significantly increased in poor pregnancy outcomes groups. Additionally, inflammatory markers, such as white blood cells (WBC), neutrophils, monocytes, platelet counts, lymphocytes, systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) were related to pregnancy outcomes. Furthermore, the results revealed that the SII level had the highest odd rates (OR) [OR = 6.957; 95% CI (5.715-8.468)], followed by SIRI level [OR = 2.948; 95% CI (2.382-3.649)], the WBC counts [OR = 1.930; 95% CI (0.901-2.960)], the lymphocyte counts [OR = 1.668; 95% CI (1.412-1.970)], and baseline BMI [OR = 1.050; 95% (1.021-1.080)]. Conclusion: This study presented that the baseline SII and SIRI levels can be valuable biochemical markers to predict the pregnancy outcome with GDM with non-invasive procedures. They can help identify high-risk pregnant women with GDM early, provide a personalized intervention in time, and enhance perinatal surveillance.

17.
Aesthetic Plast Surg ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981899

RESUMO

BACKGROUND: Aiming to measure and compare asymmetry of facial hard and soft tissues in patients with HFM and isolated microtia, examining how it evolves. METHODS: This cross-sectional study assessed facial asymmetry in male East Asian patients aged 5-12 diagnosed with unilateral hemifacial microsomia (Pruzansky-Kaban types I and IIA) or isolated microtia. Using 3D imaging of computed tomography scans, it measured root-mean-square (RMS) values for surface deviations across facial regions. Statistical analyses explored differences between conditions and the relationship of age with facial asymmetry. RESULTS: A total of 120 patients were categorized into four groups by condition (HFM or isolated microtia) and age (5-7 and 8-12 years). Patients with HFM exhibited the greatest asymmetry in the lower cheek, while those with isolated microtia showed primarily upper face asymmetry. Significant differences, except in the forehead and nasal soft tissue, were noted between the groups across age categories. Notable distinctions in hard tissue were found between age groups in the nasal and mid-cheek areas for patients with HFM (median RMS (mm) 0.9 vs. 1.1, P = 0.02; 1.5 vs. 1.7, P = 0.03) and in the nasal and upper lip areas for patients with isolated microtia (median RMS (mm) 0.8 vs. 0.9, P = 0.002; 0.8 vs. 1.0, P = 0.002). Besides these areas for HFM, no significant age-asymmetry correlation was detected. CONCLUSIONS: Significant differences in facial asymmetry were observed between HFM and isolated microtia, with the asymmetry in specific area evolving over time. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

18.
Cancer Lett ; 598: 217095, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964728

RESUMO

Head and neck squamous cell carcinoma (HNSCC) constitutes a significant global cancer burden, given its high prevalence and associated mortality. Despite substantial progress in survival rates due to the enhanced multidisciplinary approach to treatment, these methods often lead to severe tissue damage, compromised function, and potential toxicity. Thus, there is an imperative need for novel, effective, and minimally damaging treatment modalities. Neoadjuvant treatment, an emerging therapeutic strategy, is designed to reduce tumor size and curtail distant metastasis prior to definitive intervention. Currently, neoadjuvant chemotherapy (NACT) has optimized the treatment approach for a subset of HNSCC patients, yet it has not produced a noticeable enhancement in overall survival (OS). In the contemporary cancer therapeutics landscape, immunotherapy is gaining traction at an accelerated pace. Notably, neoadjuvant immunotherapy (NAIT) has shown promising radiological and pathological responses, coupled with encouraging efficacy in several clinical trials. This potentially paves the way for a myriad of possibilities in treatment de-escalation of HNSCC, which warrants further exploration. This paper reviews the existing strategies and efficacies of neoadjuvant immune checkpoint inhibitors (ICIs), along with potential de-escalation strategies. Furthermore, the challenges encountered in the context of the de-escalation strategies of NAIT are explored. The aim is to inform future research directions that strive to improve the quality of life (QoL) for patients battling HNSCC.

19.
Int J Biol Macromol ; 276(Pt 2): 133920, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029840

RESUMO

Chicken meat is highly perishable and mainly preserved by plastic packaging materials, whereas their widely used have increased environmental burden and threatened human health. Bioactive packaging materials fabricated by biopolymers are promising alternatives for meat preservation. Herein, cassava starch (CS)/sodium carboxymethyl cellulose (CMC) edible films fortified with Litsea cubeba essential oil (LC-EO) were fabricated and characterized. Results showed the textural, mechanical and barrier properties of the CS/CMC edible films were significantly improved after incorporating with LC-EO. Moreover, the composite edible films exhibited potent antibacterial properties, biodegradability, hydrophobicity, and thermal stability. Whereas the water solubility and moisture content was reduced up to 29.68 % and 24.37 %, respectively. The release behavior of LC-EO suggested the suitability of the composite edible films for acidic foods. Comparing with the control group, the pH values of the meat samples packaged with CS/CMC/LCEO-4 mg/mL edible films maintained at around 6.7, and weight loss rate was 15 %. The color and texture changes, and the lipid oxidation of the meat samples with CS/CMC/LCEO-4 mg/mL packaging were also markedly delayed. The microbial growth was retarded at 6.35 log CFU/g after storage for 10 days. These findings suggested the CS/CMC/LCEO-4 mg/mL edible films had great potential for chicken meat preservation.

20.
Front Mol Biosci ; 11: 1372783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035697

RESUMO

Introduction: Hexavalent chromium [Cr (VI)] has been identified as a human carcinogen and environmental pollutant capable of affecting multiple systems in the human body. However, the specific mechanisms by which Cr (VI) affects the human nervous system remain unclear. Objective: Following confirmation of Cr (VI)'s toxic effects on rat astrocytes, this study explores the metabolites and associated metabolic pathways of rat astrocytes under different doses of Cr (VI) exposure. Methods: Cell viability was assessed using CCK8 assays, intracellular reactive oxygen species (ROS) levels were measured using DCFH-DA fluorescent probes, intracellular 8-hydroxydeoxyguanosine (8-OHdG) content was determined by Elisa, mitochondrial membrane potential was observed using JC-1 probes, and key metabolites were identified through untargeted metabolomics analysis. Results: With increasing Cr (VI) doses, significant decreases in cell viability were observed in the 4, 8, and 16 mg/L dose groups (p < 0.05). Elevated levels of ROS and 8-OHdG, increased caspase-3 activity, and significant reductions in mitochondrial membrane potential were observed in the 2 and 4 mg/L dose groups (p < 0.05). Untargeted metabolomics analysis revealed Cr (VI)'s impact on key metabolites such as sphingosine and methionine. Enrichment analysis of KEGG pathways highlighted the critical roles of sphingolipid metabolism and the methionine-cysteine cycle in the effects of Cr (VI) on rat astrocytes. Conclusion: Our study underscores the potential neuro-health risks associated with environmental and occupational exposure to Cr (VI) and provides new perspectives and directions for investigating neurotoxic mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...