Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19988, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810053

RESUMO

Introduction: Operating room workers are at risk of experiencing adverse effects due to occupational exposure to waste anesthetic gases (WAGs). One of the consequences of long-term WAGs exposure is the probability of developing deoxyribonucleic acid (DNA) damage. This systematic review investigated the link between WAGs and DNA damage in operating room workers. Methods: PubMed, Science Direct, ProQuest, Scopus, and EbscoHost, as well as hand-searching, were used to find literature on the relationship between WAGs and DNA damage. Three independent reviewers independently assessed the study's quality. Meta-analysis was conducted for several DNA damage indicators, such as comet assay (DNA damage score, tail's length, tail's DNA percentage), micronuclei formation, and total chromosomal aberration. Results: This systematic review included 29 eligible studies (2732 participants). The majority of the studies used a cross-sectional design. From our meta-analysis, which compared the extent of DNA damage in operating room workers to the unexposed group, operating room workers exposed to WAGs had a significantly higher DNA damage indicator, including DNA damage score, comet tail's length, comet tail's DNA percentage, micronuclei formation, and total chromosomal aberration (p < 0.05) than non-exposed group. Conclusion: Waste anesthetic gases have been found to significantly impact DNA damage indicators in operating room personnel, including comet assay, micronuclei development, and chromosomal aberration. To reduce the impact of exposure, hospital and operating room personnel should take preventive measures, such as by adapting scavenger method.

2.
Acta Biochim Pol ; 70(2): 379-387, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329504

RESUMO

Vitamin D has anti-proliferative, anti-inflammatory, and apoptotic abilities. Vitamin D deficiency can induce deoxyribonucleic acid (DNA) damage. The aim of the study was to create a systematic review to analyze the relationship between vitamin D and DNA damage in various populations. PubMed, Scopus, EbscoHost, Google Scholar, and Epistemonikos were used to identify literature regarding the relationship between vitamin D and DNA damage. Assessment of study quality was carried out by three independent reviewers individually. A total of 25 studies were assessed as eligible and included in our study. Twelve studies were conducted in humans consisting of two studies with experimental design and ten studies with observational pattern. Meanwhile, thirteen studies were conducted in animals (in vivo). It is found that the majority of studies demonstrated that vitamin D prevents DNA damage and minimizes the impact of DNA damage that has occurred (p<0.05). However, two studies (8%) did not find such an association and one research only found a specific association in the cord blood, not in maternal blood. Vitamin D has a protective effect against DNA damage. A diet rich in vitamin D and vitamin D supplementation is recommended to prevent DNA damage.


Assuntos
Deficiência de Vitamina D , Vitamina D , Humanos , Animais , Vitamina D/farmacologia , Vitaminas/farmacologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Inflamação/complicações , DNA , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA