Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 165: 129-138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32966849

RESUMO

Reproduction is the biological process that sustains life. It is regulated by a neuro-hormonal mechanism that is synchronized by the interaction among the hypothalamus, hypophysis, and ovaries. Ovulation is regulated by the secretion of the gonadotropin-releasing hormone (GnRH), which stimulates the release of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition to these neuroendocrine signals, other signals originating from the central nervous system, hypophysis, thyroid, adrenal glands, and the ovary itself are also involved. One of the neurotransmission systems involved in the regulation of ovulation is the cholinergic system, which not only participates in the regulation of reproductive functions but also modulates motor coordination, thermoregulation, and cognitive function. In mammals, the vagus nerve is one of the pathways through which acetylcholine reaches the ovary, and this pathway also participates in the regulation of ovulation. However, this regulation depends on the age of the animal (prepubertal or adult) and its endocrine status. The present review analyzes evidence of the roles of the central and peripheral cholinergic system and vagal innervation in the regulation of GnRH secretion and ovulation as well as their roles in the development and persistence of polycystic ovary syndrome (PCOS).


Assuntos
Acetilcolina/metabolismo , Neurônios Colinérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Ovulação/fisiologia , Nervo Vago/metabolismo , Animais , Vias Neurais/metabolismo , Transmissão Sináptica/fisiologia
2.
J Assist Reprod Genet ; 37(6): 1477-1488, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32363564

RESUMO

PURPOSE: Little is known about the role of the superior ovarian nerve (SON) in follicular development during the estrus cycle. The aim of the present study was to analyze the role of neural signals arriving through the SON at the ovaries in the regulation of follicular development and ovarian steroid secretion in diestrus 1 of cyclic rats. METHODS: Cyclic rats were subjected to left, right, or bilateral SON sectioning or to unilateral or bilateral laparotomy at diestrus 1 at 11:00 h. Animals were sacrificed 24 h after surgery. RESULTS: Compared to laparotomized animals, unilateral SON sectioning decreased the number of preovulatory follicles, while bilateral SON sectioning resulted in a decreased number of atretic preantral follicles. An important observation was the presence of invaginations in the follicular wall of large antral and preovulatory follicles in animals with denervation. Furthermore, left SON sectioning increased progesterone levels but decreased testosterone levels, which are effects that were not observed in animals that were subjected to right denervation. CONCLUSIONS: At 11:00 h of diestrus 1, the SON was found to stimulate follicle development, possibly via neural signals, such as noradrenaline and/or vasoactive intestinal peptide, and this stimulation induced the formation of follicle-stimulating hormone receptors. The role of the SON in the regulation of ovarian steroid secretion is asymmetric: the left SON inhibits the regulation of progesterone and stimulates testosterone secretion, and the right nerve does not participate in these processes.


Assuntos
Diestro/fisiologia , Estro/fisiologia , Folículo Ovariano/fisiologia , Ovário/inervação , Animais , Modelos Animais de Doenças , Feminino , Hormônio Foliculoestimulante/farmacologia , Humanos , Laparotomia , Hormônio Luteinizante/farmacologia , Tecido Nervoso/patologia , Tecido Nervoso/cirurgia , Folículo Ovariano/inervação , Folículo Ovariano/cirurgia , Ovário/fisiologia , Ovário/cirurgia , Ovulação/fisiologia , Ratos , Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...