Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Genet ; 53(10): 1480-1492, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34611363

RESUMO

Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.


Assuntos
Diferenciação Celular , Genoma , Crista Neural/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrases/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , Células Musculares/citologia , Crista Neural/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Fatores de Transcrição/química , Transcrição Gênica , Coesinas
3.
Cell Syst ; 12(9): 885-899.e8, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34352221

RESUMO

Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Diferenciação Celular/genética , Fibroblastos/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nature ; 595(7867): 438-443, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163071

RESUMO

In diseased organs, stress-activated signalling cascades alter chromatin, thereby triggering maladaptive cell state transitions. Fibroblast activation is a common stress response in tissues that worsens lung, liver, kidney and heart disease, yet its mechanistic basis remains unclear1,2. Pharmacological inhibition of bromodomain and extra-terminal domain (BET) proteins alleviates cardiac dysfunction3-7, providing a tool to interrogate and modulate cardiac cell states as a potential therapeutic approach. Here we use single-cell epigenomic analyses of hearts dynamically exposed to BET inhibitors to reveal a reversible transcriptional switch that underlies the activation of fibroblasts. Resident cardiac fibroblasts demonstrated robust toggling between the quiescent and activated state in a manner directly correlating with BET inhibitor exposure and cardiac function. Single-cell chromatin accessibility revealed previously undescribed DNA elements, the accessibility of which dynamically correlated with cardiac performance. Among the most dynamic elements was an enhancer that regulated the transcription factor MEOX1, which was specifically expressed in activated fibroblasts, occupied putative regulatory elements of a broad fibrotic gene program and was required for TGFß-induced fibroblast activation. Selective CRISPR inhibition of the single most dynamic cis-element within the enhancer blocked TGFß-induced Meox1 activation. We identify MEOX1 as a central regulator of fibroblast activation associated with cardiac dysfunction and demonstrate its upregulation after activation of human lung, liver and kidney fibroblasts. The plasticity and specificity of BET-dependent regulation of MEOX1 in tissue fibroblasts provide previously unknown trans- and cis-targets for treating fibrotic disease.


Assuntos
Elementos Facilitadores Genéticos , Fibroblastos/citologia , Cardiopatias/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Epigenômica , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas/antagonistas & inibidores , Análise de Célula Única , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
5.
Cell Stem Cell ; 28(5): 938-954.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529599

RESUMO

Pathogenic mutations in LAMIN A/C (LMNA) cause abnormal nuclear structure and laminopathies. These diseases have myriad tissue-specific phenotypes, including dilated cardiomyopathy (DCM), but how LMNA mutations result in tissue-restricted disease phenotypes remains unclear. We introduced LMNA mutations from individuals with DCM into human induced pluripotent stem cells (hiPSCs) and found that hiPSC-derived cardiomyocytes, in contrast to hepatocytes or adipocytes, exhibit aberrant nuclear morphology and specific disruptions in peripheral chromatin. Disrupted regions were enriched for transcriptionally active genes and regions with lower LAMIN B1 contact frequency. The lamina-chromatin interactions disrupted in mutant cardiomyocytes were enriched for genes associated with non-myocyte lineages and correlated with higher expression of those genes. Myocardium from individuals with LMNA variants similarly showed aberrant expression of non-myocyte pathways. We propose that the lamina network safeguards cellular identity and that pathogenic LMNA variants disrupt peripheral chromatin with specific epigenetic and molecular characteristics, causing misexpression of genes normally expressed in other cell types.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Dilatada/genética , Cromatina/genética , Humanos , Lamina Tipo A/genética , Mutação/genética , Miócitos Cardíacos
6.
Circulation ; 142(24): 2338-2355, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33094644

RESUMO

BACKGROUND: Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.


Assuntos
Metabolismo Energético , Fator de Transcrição GATA4/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Metabolismo Energético/genética , Fator de Transcrição GATA4/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Proteínas Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenótipo , Ligação Proteica , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
7.
Nature ; 573(7774): 430-433, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511695

RESUMO

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Assuntos
Linfócitos T CD8-Positivos , Fibrose Endomiocárdica/terapia , Imunoterapia Adotiva , Animais , Antígenos de Superfície/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibrose Endomiocárdica/imunologia , Fibroblastos/imunologia , Humanos , Masculino , Camundongos , Ovalbumina/imunologia , Cicatrização
8.
Proc Natl Acad Sci U S A ; 116(10): 4362-4371, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782824

RESUMO

During the stepwise specification and differentiation of tissue-specific multipotent progenitors, lineage-specific transcriptional networks are activated or repressed to orchestrate cell specification. The gas-exchange niche in the lung contains two major epithelial cell types, alveolar type 1 (AT1) and AT2 cells, and the timing of lineage specification of these cells is critical for the correct formation of this niche and postnatal survival. Integrating cell-specific lineage tracing studies, spatially specific mRNA transcript and protein expression, and single-cell RNA-sequencing analysis, we demonstrate that specification of alveolar epithelial cell fate begins concomitantly with the proximal-distal specification of epithelial progenitors and branching morphogenesis earlier than previously appreciated. By using a newly developed dual-lineage tracing system, we show that bipotent alveolar cells that give rise to AT1 and AT2 cells are a minor contributor to the alveolar epithelial population. Furthermore, single-cell assessment of the transcriptome identifies specified AT1 and AT2 progenitors rather than bipotent cells during sacculation. These data reveal a paradigm of organ formation whereby lineage specification occurs during the nascent stages of development coincident with broad tissue-patterning processes, including axial patterning of the endoderm and branching morphogenesis.


Assuntos
Linhagem da Célula , Pulmão/citologia , Alvéolos Pulmonares/citologia , Animais , Diferenciação Celular , Feminino , Hibridização in Situ Fluorescente , Camundongos , Gravidez , Transcriptoma
9.
Chromosoma ; 126(5): 595-604, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28791511

RESUMO

The centromere directs chromosome segregation and genetic inheritance but is not itself heritable in a canonical, DNA-based manner. In most species, centromeres are epigenetically defined by the presence of a histone H3 variant centromere protein A (CENP-A), independent of underlying DNA sequence. Therefore, centromere inheritance depends on maintaining the CENP-A nucleosome mark across generations. Experiments in cycling somatic cells have led to a model in which centromere identity is maintained by a cell cycle-coupled CENP-A chromatin assembly pathway. However, the processes of animal gametogenesis pose unique challenges to centromere inheritance because of the extended cell cycle arrest and the massive genome reorganization in the female and male germline, respectively. Here, we review our current understanding of germline centromere inheritance and highlight outstanding questions.


Assuntos
Centrômero/genética , Epigênese Genética , Células Germinativas , Padrões de Herança , Animais , Centrômero/metabolismo , Proteína Centromérica A , Montagem e Desmontagem da Cromatina , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...