Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(5): 054704, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243289

RESUMO

The work describes a novel approach to the design of a fast, multichannel measurement system for plasma diagnostics [A. Wojenski et al., Fusion Eng. Des. 123, 727 (2016)]. Its main scope is to provide measurements of soft X-ray (SXR) emission during plasma phenomena at the W-Environment in Steady-state Tokamak (WEST), especially for monitoring and tracing tungsten impurities. This paper describes the vertical Gas Electron Multiplier (GEM) camera installed at the WEST [M. Chernyshova et al., J. Instrument. 10, P10022 (2015)]. The designed GEM detector readout board has more than 100 channels, resulting in high-performance requirements for the data acquisition and processing system. The novel system construction approach is that the unit works on the raw signals providing a high quality of the data, especially in the scope of pileup effect analysis. In the case of doubtful results, the source data can be easily reviewed offline. The data selection and transmission are done in Field-Programmable Gate Arrays (FPGAs) on the custom boards with the custom Peripheral Component Interconnect (PCI)-Express Gen2 switch that allows us to register signals from multiple FPGAs and then process the data by complex algorithms [G. Kasprowicz et al., J. Fusion Energy 38, 480 (2019)]. The firmware is replaceable and different working modes can be applied (some under verification): global trigger mode, high-speed data serialization, and extended signal registration. Low level optimized central processing unit software for data readout was also designed [P. Linczuk et al., J. Instrum. 14, C05001 (2019)]. The installation of the system is described due to complex system components' distribution. The first results of the successful acquisition of the plasma at the WEST are discussed. The corresponding SXR energy and topology spectra were computed. Those are the first technical measurements of the system to ensure verification of data quality.

2.
Rev Sci Instrum ; 89(10): 10G106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399675

RESUMO

A detecting system based on the Gas Electron Multiplier (GEM) technology is considered for tokamak plasma radiation monitoring. In order to estimate its capabilities in processing and recording intense photon flux (up to ∼0.1 MHz/mm2), the imaging effectiveness of GEM detectors was tested with different patterned anode planes (i.e., different signal readouts): a simple hexagonal readout structure and three structures with interconnected electrodes (XY square, XY rectangular, and UXV). It was found that under intense photon flux, all the readouts fail to account for a considerable amount of the incoming signals due to mostly photon position determination ambiguity and overlapped signals. Analysis of the signals that can be used to determine photon position and energy unambiguously showed that the UXV readout structure is more effective among the readouts with interconnected electrodes. Along with similar spatial resolution and accuracy, the UXV based layout could be considered as a quite promising base of the interconnected anode electrodes configuration, keeping in mind that the photon rate capability has to be improved for the final application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...