Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(8): 3121-3138, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27862698

RESUMO

Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO2 -eq m-2 to a source of 105 to 144 g CO2 -eq m-2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2 , we provide here the first in situ evidence of increasing N2 O emissions from tundra soils with warming. Warming promoted N2 O release not only from bare peat, previously identified as a strong N2 O source, but also from the abundant, vegetated peat surfaces that do not emit N2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic.


Assuntos
Dióxido de Carbono , Mudança Climática , Óxido Nitroso , Tundra , Regiões Árticas , Gases , Metano , Federação Russa
2.
Water Res ; 46(6): 1755-62, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280953

RESUMO

Constructed wetlands are nowadays successfully employed as an alternative technology for wastewater and sewage sludge treatment. In these systems organic matter and nutrients are transformed and removed by a variety of microbial reaction and gaseous compounds such as methane (CH(4)) and nitrous oxide (N(2)O) may be released to the atmosphere. The aim of this work is to introduce a method to determine greenhouse gas emissions from sludge treatment wetlands (STW) and use the method in a full-scale system. Sampling and analysing techniques used to determine greenhouse gas emissions from croplands and natural wetlands were successfully adapted to the quantification of CH(4) and N(2)O emissions from an STW. Gas emissions were measured using the static chamber technique in 9 points of the STW during 13 days. The spatial variation in the emission along the wetland did not follow some specific pattern found for the temporal variation in the fluxes. Emissions ranged from 10 to 5400 mg CH(4)/m(2)d and from 20 to 950 mgN(2)O/m(2)d, depending on the feeding events. The comparison between the CH(4) and N(2)O emissions of different sludge management options shows that STW have the lowest atmospheric impact in terms of CO(2) equivalent emissions (Global warming potential with time horizon of 100 years): 17 kg CO(2) eq/PE y for STW, 36 kg CO(2) eq/PE y for centrifuge and 162 kg CO(2) eq/PE y for untreated sludge transport, PE means Population Equivalent.


Assuntos
Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Esgotos/química , Áreas Alagadas , Análise de Variância , Aquecimento Global , Modelos Lineares , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...