Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(5): 891-912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429930

RESUMO

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.


Assuntos
NAD , Proteômica , Humanos , Adulto , Recém-Nascido , NAD/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias Musculares/metabolismo , Gotículas Lipídicas/metabolismo
2.
NAR Genom Bioinform ; 4(4): lqac073, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36225530

RESUMO

With the current surge of spatial transcriptomics (ST) studies, researchers are exploring the deep interactive cell-play directly in tissues, in situ. However, with the current technologies, measurements consist of mRNA transcript profiles of mixed origin. Recently, applications have been proposed to tackle the deconvolution process, to gain knowledge about which cell types (SC) are found within. This is usually done by incorporating metrics from single-cell (SC) RNA, from similar tissues. Yet, most existing tools are cumbersome, and we found them hard to integrate and properly utilize. Therefore, we present AntiSplodge, a simple feed-forward neural-network-based pipeline designed to effective deconvolute ST profiles by utilizing synthetic ST profiles derived from real-life SC datasets. AntiSplodge is designed to be easy, fast and intuitive while still being lightweight. To demonstrate AntiSplodge, we deconvolute the human heart and verify correctness across time points. We further deconvolute the mouse brain, where spot patterns correctly follow that of the underlying tissue. In particular, for the hippocampus from where the cells originate. Furthermore, AntiSplodge demonstrates top of the line performance when compared to current state-of-the-art tools. Software availability: https://github.com/HealthML/AntiSplodge/.

3.
Science ; 377(6606): eabo1984, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926050

RESUMO

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Análise de Célula Única , Transcriptoma , Displasia Arritmogênica Ventricular Direita/genética , Atlas como Assunto , Cardiomiopatia Dilatada/genética , Núcleo Celular/genética , Insuficiência Cardíaca/genética , Ventrículos do Coração , Humanos , RNA-Seq
4.
Proc Natl Acad Sci U S A ; 119(28): e2204174119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787042

RESUMO

Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403+/-) with Lpar1-ablated mice to create mice carrying both genetic changes (403+/- LPAR1 -/-) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403+/- LPAR1WT, 403+/- LPAR1 -/- mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte , Modelos Animais de Doenças , Células Endoteliais/patologia , Fibrose , Hipertrofia/patologia , Camundongos
5.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743192

RESUMO

Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFß-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.


Assuntos
Tecido Elástico , Proteína-Lisina 6-Oxidase , Animais , Aorta/metabolismo , Pressão Sanguínea , Cobre , Dilatação Patológica/patologia , Tecido Elástico/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
6.
Circulation ; 144(25): 2021-2034, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34806902

RESUMO

BACKGROUND: Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. METHODS: Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5ΔCat). Proteomics was applied to study ECM remodeling in left ventricular samples from patients with HF, with a particular focus on the effects of common medications used for the treatment of HF. RESULTS: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5ΔCat mice, angiotensin II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin ß1, filamin A, and connexin 43. Echocardiographic assessment of Adamts5ΔCat mice revealed a reduced ejection fraction and an impaired global longitudinal strain on angiotensin II infusion. Cardiac hypertrophy and collagen deposition were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from patients with ischemic HF (n=65), the use of ß-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that ß1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, patients with HF treated with ß-blockers had a distinct cardiac ECM profile. CONCLUSIONS: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that ß-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.


Assuntos
Proteína ADAMTS5/metabolismo , Matriz Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Proteoglicanas/metabolismo , Animais , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteômica
7.
Curr Protoc ; 1(5): e132, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34043278

RESUMO

Both single-cell RNA sequencing (scRNAseq) and single-nucleus RNA sequencing (snRNAseq) can be used to characterize the transcriptional profile of individual cells, and based on these transcriptional profiles, help define cell type distribution in mixed cell populations. However, scRNAseq analyses are confounded if some of the cells are large (>50 µm) or if some of cells adhere more tightly to some adjacent cells than to others. Further, single cell isolation for scRNAseq requires fresh tissue, which may not be available for human or animal model tissues. Additionally, the current enzymatic and mechanical methods for single-cell dissociation can lead to stress-induced transcriptional artifacts. Nuclei for snRNAseq, on the other hand, can be isolated from any cell, regardless of size, and from either fresh or frozen tissues, and compared to whole cells, they are more resistant to mechanical pressures and appear not to exhibit as many cell isolation-based transcriptional artifacts. Here, we describe a time- and cost-effective procedure to isolate nuclei from mammalian cells and tissues. The protocol incorporates steps to mechanically disrupt samples to release nuclei. Compared to conventional nuclei isolation protocols, the approach described here increases overall efficiency, eliminates risk of contaminant exposure, and reduces volumes of expensive reagents. A series of RNA quality control checks are also incorporated to ensure success and reduce costs of subsequent snRNAseq experiments. Nuclei isolated by this procedure can be separated on the 10× Genomics Chromium system for either snRNAseq and/or Single-Nucleus ATAC-Seq (snATAC-Seq), and is also compatible with other single cell platforms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Sample preparation and quality control check via RNA Isolation and Analysis Basic Protocol 2: Nuclei Isolation.


Assuntos
Núcleo Celular , Núcleo Solitário , Animais , Separação Celular , Modelos Animais de Doenças , Humanos , Análise de Sequência de RNA
8.
Nat Commun ; 12(1): 1463, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674590

RESUMO

Kinesin-1 is a processive motor protein that uses ATP-derived energy to transport a variety of intracellular cargoes toward the cell periphery. The ability to visualize and monitor kinesin transport in live cells is critical to study the myriad of functions associated with cargo trafficking. Herein we report the discovery of a fluorogenic small molecule substrate (QPD-OTf) for kinesin-1 that yields a precipitating dye along its walking path on microtubules (MTs). QPD-OTf enables to monitor native kinesin-1 transport activity in cellulo without external modifications. In vitro assays show that kinesin-1 and MTs are sufficient to yield fluorescent crystals; in cells, kinesin-1 specific transport of cargo from the Golgi appears as trails of fluorescence over time. These findings are further supported by docking studies, which suggest the binding of the activity-based substrate in the nucleotide binding site of kinesin-1.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Trifosfato de Adenosina , Animais , Sítios de Ligação , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Camundongos , Paclitaxel , Transporte Proteico , Células RAW 264.7
9.
Blood ; 137(22): 3116-3126, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661274

RESUMO

The pathophysiology of sickle cell disease (SCD) is driven by chronic inflammation fueled by damage associated molecular patterns (DAMPs). We show that elevated cell-free DNA (cfDNA) in patients with SCD is not just a prognostic biomarker, it also contributes to the pathological inflammation. Within the elevated cfDNA, patients with SCD had a significantly higher ratio of cell-free mitochondrial DNA (cf-mtDNA)/cell-free nuclear DNA compared with healthy controls. Additionally, mitochondrial DNA in patient samples showed significantly disproportionately increased hypomethylation compared with healthy controls, and it was increased further in crises compared with steady-state. Using flow cytometry, structured illumination microscopy, and electron microscopy, we showed that circulating SCD red blood cells abnormally retained their mitochondria and, thus, are likely to be the source of the elevated cf-mtDNA in patients with SCD. Patient plasma containing high levels of cf-mtDNA triggered the formation of neutrophil extracellular traps (NETs) that was substantially reduced by inhibition of TANK-binding kinase 1, implicating activation of the cGAS-STING pathway. cf-mtDNA is an erythrocytic DAMP, highlighting an underappreciated role for mitochondria in sickle pathology. These trials were registered at www.clinicaltrials.gov as #NCT00081523, #NCT03049475, and #NCT00047996.


Assuntos
Anemia Falciforme/sangue , Ácidos Nucleicos Livres/sangue , Metilação de DNA , DNA Mitocondrial/sangue , Adulto , Idoso , Biomarcadores/sangue , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Inflamação/sangue , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Nucleotidiltransferases/metabolismo , Transdução de Sinais
11.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177079

RESUMO

Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). However, the biological functions of LRRK2 remain incompletely understood. Here, we report that LRRK2 is recruited to lysosomes after exposure of cells to the lysosome membrane-rupturing agent LLOME. Using an unbiased proteomic screen, we identified the motor adaptor protein JIP4 as an LRRK2 partner at the lysosomal membrane. LRRK2 can recruit JIP4 to lysosomes in a kinase-dependent manner via the phosphorylation of RAB35 and RAB10. Using super-resolution live-cell imaging microscopy and FIB-SEM, we demonstrate that JIP4 promotes the formation of LAMP1-negative tubules that release membranous content from lysosomes. Thus, we describe a new process orchestrated by LRRK2, which we name LYTL (LYsosomal Tubulation/sorting driven by LRRK2), by which lysosomal tubulation is used to release vesicles from lysosomes. Given the central role of the lysosome in PD, LYTL is likely to be disease relevant.


Assuntos
Lisossomos , Proteômica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Fosforilação , Transporte Proteico
12.
Nature ; 588(7838): 466-472, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971526

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Assuntos
Miocárdio/citologia , Análise de Célula Única , Transcriptoma , Adipócitos/classificação , Adipócitos/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Epitélio , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Átrios do Coração/anatomia & histologia , Átrios do Coração/citologia , Átrios do Coração/inervação , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Ventrículos do Coração/inervação , Homeostase/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miócitos Cardíacos/classificação , Miócitos Cardíacos/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Pericitos/classificação , Pericitos/metabolismo , Receptores de Coronavírus/análise , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Estromais/classificação , Células Estromais/metabolismo
13.
Nat Commun ; 11(1): 3722, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709902

RESUMO

Human movement occurs through contraction of the basic unit of the muscle cell, the sarcomere. Sarcomeres have long been considered to be arranged end-to-end in series along the length of the muscle into tube-like myofibrils with many individual, parallel myofibrils comprising the bulk of the muscle cell volume. Here, we demonstrate that striated muscle cells form a continuous myofibrillar matrix linked together by frequently branching sarcomeres. We find that all muscle cells contain highly connected myofibrillar networks though the frequency of sarcomere branching goes down from early to late postnatal development and is higher in slow-twitch than fast-twitch mature muscles. Moreover, we show that the myofibrillar matrix is united across the entire width of the muscle cell both at birth and in mature muscle. We propose that striated muscle force is generated by a singular, mesh-like myofibrillar network rather than many individual, parallel myofibrils.


Assuntos
Fenômenos Mecânicos , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Sarcômeros/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Contração Muscular/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Miofibrilas/patologia , Sarcômeros/patologia
14.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375181

RESUMO

Although mitochondrial DNA (mtDNA) is prone to accumulate mutations and lacks conventional DNA repair mechanisms, deleterious mutations are exceedingly rare. How the transmission of detrimental mtDNA mutations is restricted through the maternal lineage is debated. Here, we demonstrate that mitochondrial fission, together with the lack of mtDNA replication, segregate mtDNA into individual organelles in the Drosophila early germarium. After mtDNA segregation, mtDNA transcription begins, which activates respiration. Mitochondria harboring wild-type genomes have functional electron transport chains and propagate more vigorously than mitochondria containing deleterious mutations in hetreoplasmic cells. Therefore, mtDNA expression acts as a stress test for the integrity of mitochondrial genomes and sets the stage for replication competition. Our observations support selective inheritance at the organelle level through a series of developmentally orchestrated mitochondrial processes. We also show that the Balbiani body has a minor role in mtDNA selective inheritance by supplying healthy mitochondria to the pole plasm. These two mechanisms may act synergistically to secure the transmission of functional mtDNA through Drosophila oogenesis.


Assuntos
DNA Mitocondrial/genética , Drosophila melanogaster/genética , Genes Mitocondriais , Genoma Mitocondrial , Oócitos/metabolismo , Oogênese/genética , Animais , Respiração Celular/genética , Replicação do DNA , DNA Mitocondrial/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mitocôndrias , Dinâmica Mitocondrial , Mutação , Oócitos/citologia , Oócitos/crescimento & desenvolvimento
15.
ACS Sens ; 5(3): 807-813, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32124606

RESUMO

Detection of specific oligonucleotide sequences is central to numerous applications, and technologies amenable to point-of-care diagnostics or end users are needed. Here, we report a technology making use of a bioluminescent readout and smartphone quantification. The sensor is a semisynthetic luciferase (H-Luc-PNA conjugate) that is turned on by a strand-displacement reaction. We demonstrated sensing of three different microRNAs (miRs), as representative cancer biomarkers, and demonstrate the possibility to integrate an AND gate to sense two sequences simultaneously.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais , Lógica , MicroRNAs/análise , Smartphone , DNA , Luciferases , Medições Luminescentes
17.
Angew Chem Int Ed Engl ; 58(45): 16033-16037, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31478317

RESUMO

Bioluminescence resonance energy transfer (BRET) has been widely used for studying dynamic processes in biological systems such as protein-protein interactions and other signaling events. Aside from acting as a reporter, BRET can also turn on functions in living systems. Herein, we report the application of BRET to performing a biorthogonal reaction in living cells; namely, releasing functional molecules through energy transfer to a coumarin molecule, a process termed bioluminolysis. An efficient BRET from Nanoluc-Halotag chimera protein (H-Luc) to a coumarin substrate yields the excited state of coumarin, which in turn triggers hydrolysis to uncage a target molecule. Compared to the conventional methods, this novel uncaging system requires no external light source and shows fast kinetics (t1/2 <2 min). We applied this BRET uncaging system to release a potent kinase inhibitor, ibrutinib, in living cells, highlighting its broad utility in controlling the supply of bioactive small molecules in vivo.


Assuntos
Cumarínicos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Luciferases/metabolismo , Medições Luminescentes/métodos , Proteínas Luminescentes/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Adenina/análogos & derivados , Células HeLa , Humanos , Piperidinas , Ligação Proteica
18.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155234

RESUMO

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Assuntos
Miocárdio/metabolismo , Biossíntese de Proteínas , Adolescente , Adulto , Idoso , Animais , Códon/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ribossomos/genética , Ribossomos/metabolismo , Adulto Jovem
19.
BMC Immunol ; 20(1): 11, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029086

RESUMO

BACKGROUND: Acute cellular rejection (ACR) is associated with complications after kidney transplantation, such as graft dysfunction and graft loss. Early risk assessment is therefore critical for the improvement of transplantation outcomes. In this work, we retrospectively analyzed a pre-transplant HLA antigen bead assay data set that was acquired by the e:KID consortium as part of a systems medicine approach. RESULTS: The data set included single antigen bead (SAB) reactivity profiles of 52 low-risk graft recipients (negative complement dependent cytotoxicity crossmatch, PRA < 30%) who showed detectable pre-transplant anti-HLA 1 antibodies. To assess whether the reactivity profiles provide a means for ACR risk assessment, we established a novel approach which differs from standard approaches in two aspects: the use of quantitative continuous data and the use of a multiparameter classification method. Remarkably, it achieved significant prediction of the 38 graft recipients who experienced ACR with a balanced accuracy of 82.7% (sensitivity = 76.5%, specificity = 88.9%). CONCLUSIONS: The resultant classifier achieved one of the highest prediction accuracies in the literature for pre-transplant risk assessment of ACR. Importantly, it can facilitate risk assessment in non-sensitized patients who lack donor-specific antibodies. As the classifier is based on continuous data and includes weak signals, our results emphasize that not only strong but also weak binding interactions of antibodies and HLA 1 antigens contain predictive information. TRIAL REGISTRATION: ClinicalTrials.gov NCT00724022 . Retrospectively registered July 2008.


Assuntos
Rejeição de Enxerto/diagnóstico , Teste de Histocompatibilidade/métodos , Transplante de Rim , Doença Aguda , Adulto , Idoso , Feminino , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Isoanticorpos/sangue , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Sensibilidade e Especificidade
20.
Neurorehabil Neural Repair ; 33(4): 284-295, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30888251

RESUMO

BACKGROUND: Abnormal muscle co-activation contributes to impairment after stroke. We developed a myoelectric computer interface (MyoCI) training paradigm to reduce abnormal co-activation. MyoCI provides intuitive feedback about muscle activation patterns, enabling decoupling of these muscles. OBJECTIVE: To investigate tolerability and effects of MyoCI training of 3 muscle pairs on arm motor recovery after stroke, including effects of training dose and isometric versus movement-based training. METHODS: We randomized chronic stroke survivors with moderate-to-severe arm impairment to 3 groups. Two groups tested different doses of isometric MyoCI (60 vs 90 minutes), and one group tested MyoCI without arm restraint (90 minutes), over 6 weeks. Primary outcome was arm impairment (Fugl-Meyer Assessment). Secondary outcomes included function, spasticity, and elbow range-of-motion at weeks 6 and 10. RESULTS: Over all 32 subjects, MyoCI training of 3 muscle pairs significantly reduced impairment (Fugl-Meyer Assessment) by 3.3 ± 0.6 and 3.1 ± 0.7 ( P < 10-4) at weeks 6 and 10, respectively. Each group improved significantly from baseline; no significant differences were seen between groups. Participants' lab-based and home-based function also improved at weeks 6 and 10 ( P ≤ .01). Spasticity also decreased over all subjects, and elbow range-of-motion improved. Both moderately and severely impaired patients showed significant improvement. No participants had training-related adverse events. MyoCI reduced abnormal co-activation, which appeared to transfer to reaching in the movement group. CONCLUSIONS: MyoCI is a well-tolerated, novel rehabilitation tool that enables stroke survivors to reduce abnormal co-activation. It may reduce impairment and spasticity and improve arm function, even in severely impaired patients.


Assuntos
Braço , Biorretroalimentação Psicológica , Movimento , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Braço/fisiopatologia , Biorretroalimentação Psicológica/métodos , Fenômenos Biomecânicos , Doença Crônica , Computadores , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular , Músculo Esquelético/fisiopatologia , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Interface Usuário-Computador , Jogos de Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...