Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 601(7891): 74-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912113

RESUMO

Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Intoxicação por Mercúrio/veterinária , Mercúrio/análise , Animais , Isótopos/análise , Fatores de Tempo
2.
Environ Sci Technol ; 43(13): 4960-6, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19673292

RESUMO

Although there is now a general consensus among mercury (Hg) biogeochemists that increased atmospheric inputs of inorganic Hg(II) to lakes and watersheds can result in increased methylmercury (MeHg) concentrations in fish, researchers still lack kinetic data describing the movement of Hg from the atmosphere, through watershed and lake ecosystems, and into fish. The use of isotopically enriched Hg species in environmental studies now allows experimentally applied new Hg to be distinguished from ambient Hg naturally present in the system. Four different enriched stable Hg(II) isotope "spikes" were applied sequentially over four years to the ground vegetation of a microcatchment at the Experimental Lakes Area (ELA) in the remote boreal forest of Canada to examine retention of Hg(II) following deposition. Areal masses of the spikes and ambient THg (all forms of Hg in a sample) were monitored for eight years, and the pattern of spike retention was used to estimate retention of newly deposited ambient Hg within the ground vegetation pool. Fifty to eighty percent of applied spike Hg was initially retained by ground vegetation. The areal mass of spike Hg declined exponentially over time and was best described by a first-order process with constants(k) ranging between 9.7 x 10(-40 day(-1) and 11.6 x 10(-4) day(-1). Average halflife (t1/2) of spike Hg within the ground vegetation pool (+/-S.D.) was 704 +/- 52 days. This retention of new atmospheric Hg(II) by vegetation delays movement of new Hg(II) into soil, runoff, and finally into adjacent lakes. Ground-applied Hg(II) spikes were not detected in tree foliage and litterfall, indicating that stomatal and/or root uptake of previously deposited Hg (i.e., "recycled" from ground vegetation or soil Hg pools) were likely not large sources of foliar Hg under these experimental conditions.


Assuntos
Atmosfera , Monitoramento Ambiental/métodos , Isótopos de Mercúrio/análise , Mercúrio/análise , Folhas de Planta/química , Canadá , Ecossistema , Meio Ambiente , Poluentes Ambientais/análise , Água Doce , Geografia , Árvores , Poluentes Químicos da Água , Abastecimento de Água
3.
Environ Sci Technol ; 43(13): 4989-94, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19673296

RESUMO

Ecosystems that have low mercury (Hg) concentrations (i.e., not enriched or impacted by geologic or anthropogenic processes) cover most of the terrestrial surface area of the earth yet their role as a net source or sink for atmospheric Hg is uncertain. Here we use empirical data to develop a rule-based model implemented within a geographic information system framework to estimate the spatial and temporal patterns of Hg flux for semiarid deserts, grasslands, and deciduous forests representing 45% of the continental United States. This exercise provides an indication of whether these ecosystems are a net source or sink for atmospheric Hg as well as a basis for recommendation of data to collect in future field sampling campaigns. Results indicated that soil alone was a small net source of atmospheric Hg and that emitted Hg could be accounted for based on Hg input by wet deposition. When foliar assimilation and wet deposition are added to the area estimate of soil Hg flux these biomes are a sink for atmospheric Hg.


Assuntos
Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes do Solo/análise , Atmosfera , Folhas de Planta/metabolismo , Fatores de Tempo , Árvores , Estados Unidos , Volatilização
4.
Environ Sci Technol ; 42(22): 8345-51, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19068816

RESUMO

Although a positive relationship between atmospheric loadings of inorganic mercury (Hg(II)) to watersheds and concentrations of methyl mercury (MeHg) in fish has now been established, net wet and dry deposition of Hg(II) and MeHg to watersheds remains challenging to quantify. In this study, concentrations and loadings of total mercury (THg; all forms of Hg in a sample) and MeHg in open area wet deposition, throughfall, and litterfall were quantified atthe remote Experimental Lakes Area in the boreal ecoregion, NW Ontario, Canada. Between 1992 and 2006, mean annual THg and MeHg loadings in the open were 36 +/- 17 and 0.5 +/- 0.2 mg ha(-1), respectively. Throughfall THg and MeHg loadings were generally 2-4 times and 0.8-2 times higher, respectively, than loadings in the open. Loadings of both THg and MeHg were highest under an old growth spruce/fir canopy and lowest under a deciduous maple canopy, whereas loadings under young jack pine and wetland spruce/pine/alder canopies were intermediate. Litterfall generally represented the largest input of THg (86-105 mg ha(-1)) and MeHg (0.7-0.8 mg ha(-1)) to the landscape on an annual basis. Using the "direct" method of estimating dry deposition (thoughfall + litterfall - open loadings), we calculated that annual dry deposition of THg and MeHg under forest canopies ranged from 105 to 201 mg ha(-1), whereas dry deposition of MeHg ranged from 0.7 to 1.2 mg ha(-1). Photoreduction and emission of wet-deposited Hg(ll) from canopy foliage were accounted for, resulting in 3-5% (5-6 mg ha(-1)) higher annual estimates of dry deposition than via the direct method alone. NetTHg and MeHg loadings to this remote landscape were lower than at any other previously studied forested site globally. This study shows that THg and MeHg loading can be extremely variable within a heterogeneous boreal landscape and that processes such as Hg photoreduction and emission from foliage should be considered when estimating dry deposition of Hg.


Assuntos
Ecossistema , Compostos de Metilmercúrio/análise , Árvores , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental/métodos , Água Doce , Humanos , Ontário , Áreas Alagadas
5.
Proc Natl Acad Sci U S A ; 104(42): 16586-91, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17901207

RESUMO

Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wildlife worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed.


Assuntos
Ecossistema , Peixes/metabolismo , Água Doce/química , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Poluição Química da Água/análise , Animais , Isótopos de Mercúrio/análise , Compostos de Metilmercúrio/metabolismo
6.
Ambio ; 36(1): 19-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17408188

RESUMO

A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: "For a given location, can we ascertain with confidence the relative contributions of local, regional, and global sources, and of natural versus anthropogenic emissions to mercury deposition?" The panel synthesized new research pertinent to this question published over the past decade, with emphasis on four major research topics: long-term anthropogenic change, current emission and deposition trends, chemical transformations and cycling, and modeling and uncertainty. Within each topic, the panel drew a series of conclusions, which are presented in this paper. These conclusions led us to concur that the answer to our question is a "qualified yes," with the qualification being dependent upon the level of uncertainty one is willing to accept. We agreed that the uncertainty is strongly dependent upon scale and that our question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the "global pool" is a recognizable "source." Many regions of interest from an ecosystem-exposure standpoint lie in between, where source attribution carries the greatest degree of uncertainty.


Assuntos
Atmosfera , Monitoramento Ambiental/estatística & dados numéricos , Poluição Ambiental/análise , Mercúrio/toxicidade , Modelos Teóricos , Geografia , Atividades Humanas/estatística & dados numéricos , Mercúrio/química
7.
Environ Sci Technol ; 40(15): 4680-8, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16913124

RESUMO

This paper presents the design of a dynamic chamber system that allows full transmission of PAR and UV radiation and permits enclosed intact foliage to maintain normal physiological function while Hg(0) flux rates are quantified in the field. Black spruce and jack pine foliage both emitted and absorbed Hg(0), exhibiting compensation points near atmospheric Hg(0) concentrations of approximately 2-3 ng m(-3). Using enriched stable Hg isotope spikes, patterns of spike Hg(ll) retention on foliage were investigated. Hg(0) evasion rates from foliage were simultaneously measured using the chamber to determine if the decline of foliar spike Hg(II) concentrations over time could be explained by the photoreduction and re-emission of spike Hg to the atmosphere. This mass balance approach suggested that spike Hg(0) fluxes alone could not account for the measured decrease in spike Hg(II) on foliage following application, implying that eitherthe chamber underestimates the true photoreduction of Hg(ll) to Hg(0) on foliage, or other mechanisms of Hg(II) loss from foliage, such as cuticle weathering, are in effect. The radiation spectrum responsible for the photoreduction of newly deposited Hg(II) on foliage was also investigated. Our spike experiments suggest that some of the Hg(ll) in wet deposition retained by the forest canopy may be rapidly photoreduced to Hg(0) and re-emitted back to the atmosphere, while another portion may be retained by foliage at the end of the growing season, with some being deposited in litterfall. This finding has implications for the estimation of Hg dry deposition based on throughfall and litterfall fluxes.


Assuntos
Câmaras de Exposição Atmosférica , Atmosfera/química , Monitoramento Ambiental/métodos , Mercúrio/análise , Árvores/química , Ecossistema , Meio Ambiente , Isótopos de Mercúrio/análise , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais
8.
Environ Sci Technol ; 39(20): 8001-7, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16295867

RESUMO

A solution containing 198Hg in the form of HgCl2 was added to a 4 m2 area of desert soils in Nevada, and soil Hg fluxes were measured using three dynamic flux chambers. There was an immediate release of 198Hg after it was applied, and then emissions decreased exponentially. Within the first 6 h after the isotope was added to the soil, approximately 12 ng m(-2) of 198Hg was emitted to the atmosphere, followed by a relatively steady flux of the isotope at 0.2 +/- 0.2 ng m(-2) h(-1) for the remainder of the experiment (62 days). Over this time, approximately 200 ng m(-2) or 2% of the 198Hg isotope was emitted from the soil, and we estimate that approximately 6% of the isotope would be re-emitted in a year's time. During the experiment, dry deposition of elemental Hg from the atmosphere was measured with an average deposition rate of 0.2 +/- 0.1 ng m(-2) h(-1). Emission of ambient Hg from the soil was observed after soil wetting with the isotope solution and after a storm event. However, the added moisture from the storm event did not affect 198Hg flux. Results suggest that in this desert environment, where there is limited precipitation, Hg deposited by wet processes is not readily re-emitted and that dry deposition of elemental Hg may be an important process.


Assuntos
Atmosfera/análise , Mercúrio/análise , Solo/análise , Umidade , Cloreto de Mercúrio/química , Mercúrio/química , Isótopos de Mercúrio/análise , Nevada , Chuva/química , Luz Solar , Temperatura
10.
J Air Waste Manag Assoc ; 55(7): 859-69, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16111125

RESUMO

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg(O)) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from approximately 1-10 ng m(-2) hr(-1) over aged landfill cover, from approximately 8-20 mg/hr from LFG flares (LFG included Hg(O) at microg/m3 concentrations), and from approximately 200-400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(O), the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10-50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Monitoramento Ambiental , Florida
11.
J Air Waste Manag Assoc ; 55(7): 870-7, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16111126

RESUMO

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg(o)) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg(o) to the air if it is initially present or formed by chemical reduction of Hg(II) to Hg(o) within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (approximately 100 mg/hr) and from dumpsters in the field (approximately 30 mg/hr for 1000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg(o) signals, indicating that much of the Hg was already present in a metallic (Hg(o)) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(o), the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg(o) at 10 to >100 microg/hr and continued to act as near constant sources for several days.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Eliminação de Resíduos , Monitoramento Ambiental , Volatilização
12.
Environ Sci Technol ; 36(6): 1245-56, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11944676

RESUMO

Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/química , Regiões Árticas , Bactérias , Disponibilidade Biológica , Ecossistema , Monitoramento Ambiental , Gases , Mercúrio/análise , Oxirredução , Periodicidade , Fotoquímica , Neve
13.
Environ Sci Technol ; 36(23): 5034-40, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12523417

RESUMO

The METAALICUS (Mercury Experiment To Assess Atmospheric Loading In Canada and the US) project is a whole ecosystem experiment designed to study the activity, mobility, and availability of atmospherically deposited mercury. To investigate the dynamics of mercury newly deposited onto a terrestrial ecosystem, an enriched stable isotope of mercury (202Hg) was sprayed onto a Boreal forest subcatchment in an experiment that allowed us, for the first time, to monitor the fate of 'new' mercury in deposition and to distinguish it from native mercury historically stored in the ecosystem. Newly deposited mercury was more reactive than the native mercury with respect to volatilization and methylation pathways. Mobility through runoff was very low and strongly decreased with time because of a rapid equilibration with the large native pool of "bound" mercury. Over one season, only approximately 8% of the added 212Hg volatilized to the atmosphere and less than 1% appeared in runoff. Within a few months, approximately 66% of the applied 202Hg remained associated with above ground vegetation, with the rest being incorporated into soils. The fraction of 202Hg bound to vegetation was much higher than seen for native Hg (<5% vegetation), suggesting that atmospherically derived mercury enters the soil pool with a time delay, after plants senesce and decompose. The initial mobility of mercury received through small rain events or dry deposition decreased markedly in a relatively short time period, suggesting that mercury levels in terrestrial runoff may respond slowly to changes in mercury deposition rates.


Assuntos
Ecossistema , Mercúrio/análise , Árvores , Adsorção , Biodegradação Ambiental , Disponibilidade Biológica , Canadá , Monitoramento Ambiental , Mercúrio/química , Plantas , Estações do Ano , Estados Unidos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...