Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 64(1): 53-61, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-16228443

RESUMO

The effects of exposure of a field-grown winter cultivar of barley (Hordeum vulgare L.) to Photosystem I (PS I) photoinhibitory conditions in the form of bright day-light combined with chilling conditions were investigated. PS I photoinhibition was manifested by damage to the Fe-S centers of PS I and to the PS I-A/B polypeptides. Up to 20% of the PS I complexes were photoinactivated. Upon transfer to room temperature, the plants partially recovered from PS I photoinhibition, although damage was still detectable after one week. These results demonstrate that PS I photoinhibition is a physiologically relevant phenomenon in chilling-tolerant plants grown under field conditions. In order to study the induction of cyclic electron transport around PS I by PS I photoinhibitory conditions, antibodies raised against the NDH-I subunit of the NDH complex (a component of cyclic electron transport) were used to measure NDH levels in the exposed plants. A marked increase in the amount of NDH complex and a corresponding increase in NADPH dehydrogenase activity in the thylakoids were observed. The data indicate that the response to PS I-photoinhibitory conditions may involve regulated changes in cyclic electron transport around PS I.

2.
Plant Physiol ; 119(2): 455-62, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9952440

RESUMO

Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated alpha-glucans. Acid hydrolysis of the phosphorylated alpha-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.

3.
Plant Physiol ; 117(3): 869-75, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9662529

RESUMO

The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated alpha(1-->4)glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of alpha(1-->6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated alpha(1-->4)glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO43- and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated alpha(1-->4)glucan chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...