Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(13): 133601, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067298

RESUMO

We tailor the quantum statistics of a bosonic field to deterministically drive a quantum system into a target state. Experimentally accessible states of the field achieve good control of multilevel or multiqubit systems, notably also at coupling strengths beyond the rotating-wave approximation. This extends optimal control theory to the realm of fully quantized, strongly coupled control and target degrees of freedom.

2.
Nat Commun ; 13(1): 3383, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697669

RESUMO

According to quantum field theory, empty space-the ground state with all real excitations removed-is not empty, but filled with quantum-vacuum fluctuations. Their presence can manifest itself through phenomena such as the Casimir force, spontaneous emission, or dispersion forces. These fluctuating fields possess correlations between space-time points outside the light cone, i.e. points causally disconnected according to special relativity. As a consequence, two initially uncorrelated quantum objects in empty space which are located in causally disconnected space-time regions, and therefore unable to exchange information, can become correlated. Here, we have experimentally demonstrated the existence of correlations of the vacuum fields for non-causally connected space-time points by using electro-optic sampling. This result is obtained by detecting vacuum-induced correlations between two 195 fs laser pulses separated by a time of flight of 470 fs. This work marks a first step in analyzing the space-time structure of vacuum correlations in quantum field theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...