Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 471: 115-23, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20946845

RESUMO

HAMP domains are the central signal converters in bacterial chemotaxis receptors and chemosensory histidine kinases. They link the signal input modules in these proteins, that is, the ligand-binding domains, to the output modules, for example, the histidine kinase domain. A similar architecture is present in the adenylyl cyclase (AC) Rv3645 from Mycobacterium tuberculosis, where a HAMP domain is positioned between the N-terminal membrane anchor and the C-terminal catalytic domain. Because the activity of the catalytic domain responds to alterations in the HAMP domain, a method has been developed which uses the catalytic domain of Rv3645 as a reporter to probe the HAMP domain function of diverse bacterial proteins. A strategy for construction of chimeras between a variety of HAMP domains and the catalytic domain of the AC Rv3645 is described. The enzymes are overexpressed in Escherichia coli and purified by Ni2+-affinity chromatography. AC activity of the chimeras is determined by a radiotracer method published earlier in the series. Results of the mutagenesis of the HAMP domain from the Af1503 protein of Archeoglobus fulgidus are shown as an example for the successful application of the method.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Proteínas de Membrana/genética , Mutação , Mycobacterium tuberculosis , Estrutura Terciária de Proteína , Proteínas Recombinantes , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Mol Cell Biochem ; 334(1-2): 215-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19943185

RESUMO

Production of cGMP in bacteria has been studied since the early 1970s. From the beginning on it proved to be a challenging topic. In Escherichia coli the cGMP levels were two orders of magnitude lower than the corresponding cAMP levels. Furthermore, no specific cGMP receptor protein was identified in the bacterium and a physiological role of cGMP in the bacterium was not substantiated. Consequently in 1977, compelling evidence was given that cGMP is a by-product of E. coli adenylate cyclase in vivo. This may be the reason why also work on cGMP in other bacteria like Bacillus licheniformis and Caulobacter crescentus was not pursued any further. However, recent study on cGMP and guanylate cyclase in the cyanobacterium Synechocysis PCC 6803 brought cGMP signaling in bacteria back to attention. In Synechocystis cGMP levels are of similar magnitude as those of cAMP and deletion of the cya2 gene markedly reduced the amount of cGMP without affecting cAMP. A few months ago the Cya2 gene product has been biochemically and structurally characterized. It behaves as a specific guanylate cyclase in vitro and a single amino acid substitution transforms the enzyme into a specific adenylate cyclase. These data point toward the existence of a true bacterial cGMP-signaling pathway, which needs to be explored and established by future experiments.


Assuntos
Bactérias/metabolismo , GMP Cíclico/biossíntese , Transdução de Sinais
3.
Curr Opin Struct Biol ; 18(6): 667-72, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19054664

RESUMO

Out of six classes of adenylyl cyclases all class III enzymes convert ATP to cAMP in a catalytic centre moulded into an interface of bacterial homodimers and eukaryotic (pseudo)heterodimers. Formation of the catalytic centre, therefore, requires meticulous coordination of catalytic amino acids. Regulation of adenylyl cyclase activity via subtle or profound reorientation processes within the dimer interface is demonstrated on the basis of four class III adenylyl cyclase structures, a mammalian heterodimer, a mycobacterial holoenzyme that is pH regulated, another mycobacterial isoform that reorients upon substrate binding and a cyanobacterial cyclase activated by bicarbonate. Thus the interface of class III adenylyl cyclases is a like scaffold used in the regulation of activity by intrinsic and extrinsic signaling modules.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transdução de Sinais , Spirulina/enzimologia , Animais , Bicarbonatos/metabolismo , Biocatálise , Concentração de Íons de Hidrogênio , Mamíferos/metabolismo , Membranas/enzimologia , Mycobacterium/enzimologia , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
4.
Biochem J ; 415(3): 449-54, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18620542

RESUMO

Class I adenylate cyclases are found in gamma- and delta-proteobacteria. They play central roles in processes such as catabolite repression in Escherichia coli or development of full virulence in pathogens such as Yersinia enterocolitica and Vibrio vulnificus. The catalytic domain (residues 2-446) of the adenylate cyclase of E. coli was overexpressed and purified. It displayed a V(max) of 665 nmol of cAMP x mg(-1) x min(-1) and a K(m) of 270 microM. Titration of the metal cofactor Mg(2+) against the substrate ATP showed a requirement for free metal ions in addition to the MgATP complex, suggesting a two-metal-ion mechanism as is known for class II and class III adenylate cyclases. Twelve residues which are essential for catalysis were identified by mutagenesis of a total of 20 polar residues conserved in all class I adenylate cyclases. Five essential residues (Ser(103), Ser(113), Asp(114), Asp(116) and Trp(118)) were part of a region which is found in all members of the large DNA polymerase beta-like nucleotidyltransferase superfamily. Alignment of the E. coli adenylate cyclase with the crystal structure of a distant member of the superfamily, archaeal tRNA CCA-adding enzyme, suggested that Asp(114) and Asp(116) are the metal-cofactor-ion-binding residues. The S103A mutant had a 17-fold higher K(m) than wild-type, demonstrating its important role in substrate binding. In comparison with the tRNA CCA-adding enzyme, Ser(103) of the E. coli adenylate cyclase apparently binds the gamma-phosphate group of ATP. Consistent with this function, the S103A mutation caused a marked reduction of discrimination between ATP- and ADP- or AMP-derived inhibitors.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/isolamento & purificação , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Escherichia coli/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Serina/genética , Serina/metabolismo , Relação Estrutura-Atividade
5.
J Mol Biol ; 369(5): 1282-95, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17482646

RESUMO

The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Oleico/metabolismo , Cristalografia por Raios X , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ácido Oleico/química , Conformação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
6.
FEBS J ; 274(6): 1514-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17302738

RESUMO

The C-terminal catalytic domains of the 11 mammalian phosphodiesterase families (PDEs) are important drug targets. Five of the 11 PDE families contain less well-characterized N-terminal GAF domains. cGMP is the ligand for the GAF domains in PDEs 2, 5, 6 and 11, and cAMP is the ligand for PDE10. Structurally related tandem GAF domains signalling via cAMP are present in the cyanobacterial adenylate cyclases cyaB1 and cyaB2. Because current high-resolution crystal structures of the tandem GAF domains of PDE2 and cyaB2 do not reveal how cNMP specificity is encoded, we generated chimeras between the tandem GAF domains of cyaB1 and PDE2. Both bind the ligand in the GAF B subdomains. Segmental replacements in the highly divergent beta1-beta3 region of the GAF B subdomain of cyaB1 by the corresponding PDE2 regions switched signalling from cAMP to cGMP. Using 10 chimeric constructs, we demonstrated that, for this switch in purine specificity, only 11% of the sequence of the cyanobacterial GAF B needs to be replaced by PDE2 sequences. We were unable, however, to switch the purine specificity of the PDE2 tandem GAF domain from cGMP to cAMP in reverse constructs, i.e. by replacement of PDE2 segments with those from the cyaB1 GAF tandem domain. The data provide a novel view on the structure-function relationships underlying the purine specificity of cNMP-binding GAF domains and indicate that, as potential drug targets, they must be characterized structurally and biochemically one by one.


Assuntos
Adenilil Ciclases/metabolismo , Quimera , Cianobactérias/enzimologia , Exonucleases/metabolismo , Purinas/metabolismo , Adenilil Ciclases/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , GMP Cíclico/metabolismo , Exonucleases/química , Dados de Sequência Molecular , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Cell ; 126(5): 929-40, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16959572

RESUMO

HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical packing by rotation of the helices. This suggests a model for the mechanism of signal transduction, in which HAMP alternates between the observed conformation and a canonical coiled coil. We explored this mechanism in vitro and in vivo using HAMP domain fusions with a mycobacterial adenylyl cyclase and an E. coli chemotaxis receptor. Structural and functional studies show that the equilibrium between the two forms is dependent on the side-chain size of residue 291, which is alanine in the wild-type protein.


Assuntos
Proteínas Arqueais/química , Proteínas de Membrana/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/farmacologia , Adenilil Ciclases/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus , Proteínas de Bactérias , Domínio Catalítico , Células Quimiorreceptoras , Quimiotaxia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
8.
FEBS J ; 273(18): 4219-28, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16925585

RESUMO

Adenylyl cyclase Rv2212 from Mycobacterium tuberculosis has a domain composition identical to the pH-sensing isoform Rv1264, an N-terminal regulatory domain and a C-terminal catalytic domain. The maximal velocity of Rv2212 was the highest of all 10 mycobacterial cyclases investigated to date (3.9 micromol cAMP.mg(-1).min(-1)), whereas ATP substrate affinity was low (SC(50) = 2.1 mm ATP). Guanylyl cyclase side activity was absent. The activities and kinetics of the holoenzyme and of the catalytic domain alone were similar, i.e. in distinct contrast to the Rv1264 adenylyl cyclase, in which the N-terminal domain is autoinhibitory. Unsaturated fatty acids strongly stimulated Rv2212 activity by increasing substrate affinity. In addition, fatty acids greatly enhanced the pH sensitivity of the holoenzyme, thus converting Rv2212 to a pH sensor adenylyl cyclase. Fatty acid binding to Rv2212 was modelled by homology to a recent structure of the N-terminal domain of Rv1264, in which a fatty acid-binding pocket is defined. Rv2212 appears to integrate three cellular parameters: ATP concentration, presence of unsaturated fatty acids, and pH. These regulatory properties open the possibility that novel modes of cAMP-mediated signal transduction exist in the pathogen.


Assuntos
Adenilil Ciclases/metabolismo , Ácidos Graxos Insaturados/farmacologia , Mycobacterium tuberculosis/enzimologia , Adenilil Ciclases/química , Adenilil Ciclases/genética , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática , Ácidos Graxos Insaturados/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares
9.
Mol Microbiol ; 57(3): 667-77, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16045612

RESUMO

The adenylyl cyclase Rv1625c from Mycobacterium tuberculosis codes for a protein with six transmembrane spans and a catalytic domain, i.e. it corresponds to one half of the pseudoheterodimeric mammalian adenylyl cyclases (ACs). Rv1625c is active as a homodimer. We investigated the role of the Rv1625c membrane domain and demonstrate that it efficiently dimerizes the protein resulting in a 7.5-fold drop in K(m) for ATP. Next, we generated a duplicated Rv1625c AC dimer by a head-to-tail concatenation. This produced an AC with a domain order exactly as the mammalian pseudoheterodimers. It displayed positive cooperativity and a 60% increase of v(max) compared with the Rv1625c monomer. Further, we probed the compatibility of mycobacterial and mammalian membrane domains. The second membrane anchor in the Rv1625c concatamer was replaced with membrane domain I or II of rabbit type V AC. The mycobacterial and either mammalian membrane domains are compatible with each other and both recombinant proteins are active. A M. tuberculosis Rv1625c knockout strain was assayed in a mouse infection model. In vitro growth characteristics and in vivo organ infection and mortality were unaltered in the knockout strain indicating that AC Rv1625c alone is not a virulence factor.


Assuntos
Adenilil Ciclases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/fisiopatologia , Adenilil Ciclases/genética , Animais , Domínio Catalítico , Dimerização , Modelos Animais de Doenças , Feminino , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Mycobacterium tuberculosis/genética , Coelhos , Proteínas Recombinantes de Fusão/metabolismo , Tuberculose Pulmonar/microbiologia , Virulência
10.
FEBS J ; 272(12): 3085-92, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15955067

RESUMO

Class III adenylyl cyclases usually possess six highly conserved catalytic residues. Deviations in these canonical amino acids are observed in several putative adenylyl cyclase genes as apparent in several bacterial genomes. This suggests that a variety of catalytic mechanisms may actually exist. The gene Rv0386 from Mycobacterium tuberculosis codes for an adenylyl cyclase catalytic domain fused to an AAA-ATPase and a helix-turn-helix DNA-binding domain. In Rv0386, the standard substrate, adenine-defining lysine-aspartate couple is replaced by glutamine-asparagine. The recombinant adenylyl cyclase domain was active with a V(max) of 8 nmol cAMP.mg(-1).min(-1). Unusual for adenylyl cyclases, Rv0386 displayed 20% guanylyl cyclase side-activity with GTP as a substrate. Mutation of the glutamine-asparagine pair either to alanine residues or to the canonical lysine-aspartate consensus abolished activity. This argues for a novel mechanism of substrate selection which depends on two non-canonical residues. Data from individual and coordinated point mutations suggest a model for purine definition based on an amide switch related to that previously identified in cyclic nucleotide phosphodiesterases.


Assuntos
Adenilil Ciclases/metabolismo , Isoenzimas/metabolismo , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/genética , Sequência de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Domínio Catalítico , Glutamina/genética , Glutamina/metabolismo , Guanosina Trifosfato/metabolismo , Isoenzimas/genética , Dados de Sequência Molecular , Mutação , Especificidade por Substrato
11.
Science ; 308(5724): 1020-3, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15890882

RESUMO

Class III adenylyl cyclases contain catalytic and regulatory domains, yet structural insight into their interactions is missing. We show that the mycobacterial adenylyl cyclase Rv1264 is rendered a pH sensor by its N-terminal domain. In the structure of the inhibited state, catalytic and regulatory domains share a large interface involving catalytic residues. In the structure of the active state, the two catalytic domains rotate by 55 degrees to form two catalytic sites at their interface. Two alpha helices serve as molecular switches. Mutagenesis is consistent with a regulatory role of the structural transition, and we suggest that the transition is regulated by pH.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Inibidores de Adenilil Ciclases , Adenilil Ciclases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Domínio Catalítico , Fenômenos Químicos , Físico-Química , Cristalografia por Raios X , Dimerização , Holoenzimas/química , Holoenzimas/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Proc Natl Acad Sci U S A ; 102(8): 3088-92, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15708972

RESUMO

The tandem GAF domains from the cyanobacterium Anabaena PCC7120 cyaB2 adenylyl cyclase form an antiparallel dimer with cAMP bound to all four binding sites. cAMP binding causes highly cooperative allosteric enzyme activation (>500-fold; EC(50) = 1 microM; Hill coefficient >2.0). The cyaB2 GAF domains, like those of the cyclic nucleotide phosphodiesterases (PDEs), contain conserved NKFDE motifs that when mutated in the PDEs abrogate cyclic nucleotide binding. We mutated the aspartic acids within this motif in cyaB2 to determine which domains were required for signaling. Constructs containing an Asp/Ala mutation in either GAF domain still showed positive cooperative cAMP stimulation but with reduced Hill coefficients. The cyaB2 GAF domain NKFDE motifs contain inserts of 14 (GAF-A) and 19 (GAF-B) amino acids not present in PDE2 or cyaB1. Constructs having these inserts deleted could still be activated by cAMP (23- to 100-fold) but lost all positive cooperative activation, suggesting that the inserts play an important role in domain interaction and/or stabilization of the cAMP-binding pockets. In the shortened constructs, even those with a single Asp/Ala mutation in the NKFDE motifs could still be activated by cAMP. However, in a double Asp/Ala mutant of the shortened construct, stimulation by cAMP was almost completely lost, and the EC(50) shifted far to the right. Overall, the data suggest that in GAF domains without these inserts, only the canonical lysine:aspartate salt bridge keeps the alpha4-helix and the alpha4-beta5 linker that close over the cyclic nucleotide properly oriented, thereby stabilizing the binding pocket. The cyaB2 GAF ensemble appears to be an evolutionary intermediate where both GAF domains still participate in allosteric activation by cAMP.


Assuntos
Adenilil Ciclases/química , Anabaena/enzimologia , AMP Cíclico/metabolismo , Adenilil Ciclases/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Dimerização , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 102(8): 3082-7, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15708973

RESUMO

In several species, GAF domains, which are widely expressed small-molecule-binding domains that regulate enzyme activity, are known to bind cyclic nucleotides. However, the molecular mechanism by which cyclic nucleotide binding affects enzyme activity is not known for any GAF domain. In the cyanobacterium, Anabaena, the cyaB1 and cyaB2 genes encode adenylyl cyclases that are stimulated by binding of cAMP to their N-terminal GAF domains. Replacement of the tandem GAF-A/B domains in cyaB1 with the mammalian phosphodiesterase 2A GAF-A/B tandem domains allows regulation of the chimeric protein by cGMP, suggesting a highly conserved mechanism of activation. Here, we describe the 1.9-A crystal structure of the tandem GAF-A/B domains of cyaB2 with bound cAMP and compare it to the previously reported structure of the PDE2A GAF-A/B. Unexpectedly, the cyaB2 GAF-A/B dimer is antiparallel, unlike the parallel dimer of PDE2A. Moreover, there is clear electron density for cAMP in both GAF-A and -B, whereas in PDE2A, cGMP is found only in GAF-B. Phosphate and ribose group contacts are similar to those in PDE2A. However, the purine-binding pockets appear very different from that in PDE2A GAF-B. Differences in the beta2-beta3 loop suggest that this loop confers much of the ligand specificity in this and perhaps in many other GAF domains. Finally, a conserved asparagine appears to be a new addition to the signature NKFDE motif, and a mechanism for this motif to stabilize the cNMP-binding pocket is proposed.


Assuntos
Adenilil Ciclases/química , Anabaena/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dimerização , Ativação Enzimática , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína
14.
EMBO J ; 24(4): 663-73, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15678099

RESUMO

Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/classificação , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Cinética , Metais/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ribose/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Titulometria
15.
IUBMB Life ; 57(12): 797-803, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16393782

RESUMO

The second messengers cAMP and cGMP are of central importance in signal transduction pathways. To assure pathway specificity adenylyl and guanylyl cyclases are highly selective for their substrates, ATP and GTP, respectively. The universal class III cyclases are equipped with a variety of purine-binding modes, which have been identified by structure determination and mutagenesis. Most selection mechanisms rely on a pair of residues which form hydrogen bonds to N1 and the N(6)-amino or O(6)-keto group of adenine and guanine, respectively. Furthermore, selection is supported by hydrogen bonds involving the peptide backbone and by constraints imposed by hydrophobic side-chains.


Assuntos
Adenilil Ciclases/metabolismo , Guanilato Ciclase/metabolismo , Purinas/metabolismo , Transdução de Sinais/genética , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/química , Animais , Bactérias , Eucariotos , Guanosina Trifosfato/metabolismo , Guanilato Ciclase/química , Ligação de Hidrogênio , Isoenzimas/química , Isoenzimas/metabolismo , Mamíferos , Ligação Proteica , Especificidade por Substrato
16.
FEBS Lett ; 568(1-3): 151-4, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15196937

RESUMO

The class IIIa adenylyl cyclase (AC) Rv1625c from Mycobacterium tuberculosis forms homodimers with two catalytic centres, whereas the Paramecium guanylyl and mammalian ACs operate as pseudoheterodimers with one catalytic centre. The functional and structural relationship of the catalytic domains of these related class III cyclases was investigated. Point mutations introduced into Rv1625c to engineer a forskolin-binding pocket created a single heterodimeric catalytic centre, yet did not result in forskolin activation. Chimerization of these Rv1625c point mutants with corresponding mammalian AC domains was impossible. However, it was successful using a complemental Paramecium guanylyl cyclase domain and resulted in an AC. The data signify a divergence of structural and functional evolution in class III Acs.


Assuntos
Adenilil Ciclases/metabolismo , Guanilato Ciclase/metabolismo , Mycobacterium tuberculosis/enzimologia , Paramecium/enzimologia , Adenilil Ciclases/química , Animais , Domínio Catalítico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
17.
Eur J Biochem ; 271(12): 2446-51, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15182360

RESUMO

The genes Rv1318c, Rv1319c, Rv1320c and Rv3645 of Mycobacterium tuberculosis are predicted to code for four out of 15 adenylyl cyclases in this pathogen. The proteins consist of a membrane anchor, a HAMP region and a class IIIb adenylyl cyclase catalytic domain. Expression and purification of the isolated catalytic domains yielded adenylyl cyclase activity for all four recombinant proteins. Expression of the HAMP region fused to the catalytic domain increased activity in Rv3645 21-fold and slightly reduced activity in Rv1319c by 70%, demonstrating isoform-specific effects of the HAMP domains. Point mutations were generated to remove predicted hydrophobic protein surfaces in the HAMP domains. The mutations further stimulated activity in Rv3645 eight-fold, whereas the effect on Rv1319c was marginal. Thus HAMP domains can act directly as modulators of adenylyl cyclase activity. The modulatory properties of the HAMP domains were confirmed by swapping them between Rv1319c and Rv3645. The data indicate that in the mycobacterial adenylyl cyclases the HAMP domains do not display a uniform regulatory input but instead each form a distinct signaling unit with its adjoining catalytic domain.


Assuntos
Adenilil Ciclases/química , Proteínas de Bactérias/química , Isoenzimas/química , Mycobacterium tuberculosis/enzimologia , Estrutura Secundária de Proteína , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Glicosilfosfatidilinositóis , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Cell Signal ; 16(1): 115-25, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14607282

RESUMO

In Paramecium, cAMP formation is stimulated by a potassium conductance, which is an intrinsic property of the adenylyl cyclase. We cloned a full-length cDNA and several gDNA fragments from Paramecium and Tetrahymena coding for adenylyl cyclases with a novel domain composition. A putative N-terminal ion channel domain contains a canonical S4 voltage-sensor and a canonical potassium pore-loop located C-terminally after the last transmembrane span on the cytoplasmic side. The adenylyl cyclase catalyst is C-terminally located. DNA microinjection of a green fluorescent protein (GFP)-tagged construct into the macronucleus of Paramecium resulted in ciliary localization of the expressed protein. An identical gene coding for an ion-channel adenylyl cyclase was cloned from the malaria parasite Plasmodium falciparum. Expression of the catalytic domain of the latter in Sf9 cells yielded an active homodimeric adenylyl cyclase. The occurrence of this highly unique subtype of adenylyl cyclase appears to be restricted to ciliates and apicomplexa.


Assuntos
Adenilil Ciclases/metabolismo , Paramecium/enzimologia , Plasmodium falciparum/enzimologia , Canais de Potássio/metabolismo , Tetrahymena/enzimologia , Adenilil Ciclases/genética , Adenilil Ciclases/isolamento & purificação , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Cílios/genética , Cílios/metabolismo , AMP Cíclico/biossíntese , DNA Complementar/análise , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Dados de Sequência Molecular , Paramecium/genética , Plasmodium falciparum/genética , Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/isolamento & purificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tetrahymena/genética
19.
Cell Signal ; 15(12): 1081-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14575863

RESUMO

cAMP serves as a second messenger in virtually all organisms. The most wide-spread class of cAMP-generating enzymes are the class III adenylyl cyclases. Most class III adenylyl cyclases are multi-domain proteins. The catalytic domains exclusively work as dimers, catalysis proceeds at the dimer interface, so that both monomers provide catalytic residues to each catalytic center. Inspection of amino acid sequence profiles suggests a division of the class III adenylyl cyclases in to four subclasses, class IIIa-IIId. Genome projects and postgenomic analysis have provided novel aspects in terms of catalysis and regulation. Alterations in the canonical catalytic residues occur in all four subclasses suggesting a plasticity of the catalytic mechanisms. The vast variety of additional, probably regulatory modules found in class III adenylyl cyclases obviously reflects a large collection of regulatory inputs the catalytic domains have adapted to. The large versatility of class III adenylyl cyclase catalytic domains remains a major scientific challenge.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Adenilil Ciclases/classificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
20.
EMBO J ; 21(14): 3672-80, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12110580

RESUMO

The gene cyaB1 from the cyanobacterium Anabaena sp. PCC 7120 codes for a protein consisting of two N-terminal GAF domains (GAF-A and GAF-B), a PAS domain and a class III adenylyl cyclase catalytic domain. The catalytic domain is active as a homodimer, as demonstrated by reconstitution from complementary inactive point mutants. The specific activity of the holoenyzme increased exponentially with time because the product cAMP activated dose dependently and nucleotide specifically (half-maximally at 1 microM), identifying cAMP as a novel GAF domain ligand. Using point mutants of either the GAF-A or GAF-B domain revealed that cAMP activated via the GAF-B domain. We replaced the cyanobacterial GAF domain ensemble in cyaB1 with the tandem GAF-A/GAF-B assemblage from the rat cGMP-stimulated phosphodiesterase type 2, and converted cyaB1 to a cGMP-stimulated adenylyl cyclase. This demonstrated the functional conservation of the GAF domain ensemble since the divergence of bacterial and eukaryotic lineages >2 billion years ago. In cyanobacteria, cyaB1 may act as a cAMP switch to stabilize committed developmental decisions.


Assuntos
Adenilil Ciclases/metabolismo , Anabaena/enzimologia , AMP Cíclico/metabolismo , Toxina Adenilato Ciclase , Adenilil Ciclases/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Dados de Sequência Molecular , Precursores de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...