Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518940

RESUMO

Thin composite films comprising two primary representatives of conducting polymers, poly(3, 4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), with eco-friendly cellulose nanocrystals (CNC) were prepared through electrochemical polymerization. The combination of CNC and PEDOT (or PPy) results in the formation of films with highly different surface topography and thickness. Intriguingly, different surface conductivity of PEDOT and PPy was revealed by atomic force microscopy albeit that the electrochemical properties were rather similar. The biological properties of the composites in contact with prospective human induced pluripotent stem cells (hiPSC) and cardiomyocytes derived from hiPSC demonstrated good cytocompatibility of both composites and their potential in engineering of electro-sensitive tissues. The as-prepared conducting, eco-friendly and cytocompatible composites are thus promising candidates for biomedical applications where stimuli-responsivity is a crucial cell-instructive property.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanopartículas , Humanos , Polímeros/química , Celulose/química , Engenharia Tecidual , Estudos Prospectivos , Pirróis/química
2.
Mater Sci Eng C Mater Biol Appl ; 105: 110029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546373

RESUMO

The cytocompatibility of cardiomyocytes derived from embryonic stem cells and neural progenitors, which were seeded on the surface of composite films made of graphene oxide (GO) and polypyrrole (PPy-GO) or poly(3,4-ethylenedioxythiophene) (PEDOT-GO) are reported. The GO incorporated in the composite matrix contributes to the patterning of the composite surface, while the electrically conducting PPy and PEDOT serve as ion-to-electron transducers facilitating electrical stimulation/sensing. The films were fabricated by a simple one-step electropolymerization procedure on electrically conducting indium tin oxide (ITO) and graphene paper (GP) substrates. Factors affecting the cell behaviour, i.e. the surface topography, wettability, and electrical surface conductivity, were studied. The PPy-GO and PEDOT-GO prepared on ITO exhibited high surface conductivity, especially in the case of the ITO/PPy-GO composite. We found that for cardiomyocytes, the PPy-GO and PEDOT-GO composites counteracted the negative effect of the GP substrate that inhibited their growth. Both the PPy-GO and PEDOT-GO composites prepared on ITO and GP significantly decreased the cytocompatibility of neural progenitors. The presented results enhance the knowledge about the biological properties of electroactive materials, which are critical for tissue engineering, especially in context stimuli-responsive scaffolds.


Assuntos
Condutividade Elétrica , Eletroquímica , Grafite/farmacologia , Miócitos Cardíacos/citologia , Células-Tronco Neurais/citologia , Polímeros/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Polímeros/química , Pirróis/química , Água/química
3.
Anal Chem ; 91(14): 9111-9118, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31184105

RESUMO

The irreproducibility of the standard potential (E°) is probably the last major challenge for the commercialization of solid-contact ion-selective electrodes (SCISEs) as single-use or wearable sensors. To overcome this issue, we are introducing for the first time a perfluorinated alkanoate side chain functionalized poly(3,4-ethylenedioxythiophene) (PEDOTF) as a hydrophobic SC in potassium-selective electrodes (K-SCISEs) based on plasticized poly(vinyl chloride). The SC incorporates the tetrakis(pentafluorophenyl)borate (TFAB-) anion, which is also present as a lipophilic additive in the ion-selective membrane (ISM), thus ensuring thermodynamic reversibility at the SC/ISM interface and improving the potential reproducibility of the electrodes. We show here that the PEDOTF-TFAB solid contact, which was prepolarized prior to the ISM deposition to either its half or fully conducting form (i.e. different oxidation states) in acetonitrile containing 0.01 M KTFAB, had a very stable open-circuit potential and an outstanding potential reproducibility of only ±0.5 mV (n = 6) for 1 h in the same solution after the prepolarization. This shows that the oxidation state of the highly hydrophobic PEDOTF-TFAB film (water contact angle 133°) is stable over time and can be precisely controlled with prepolarization. The SC was also not light sensitive, which is normally a disadvantage of conducting polymer SCs. After the ISM deposition, the standard deviation of the E° of the K-SCISEs prepared on glassy carbon was ±3.0 mV (n = 5), which is the same as that for conventional liquid contact K-ISEs. This indicates that the ISM deposition is the main source for the potential irreproducibility of the K-SCISEs, which has been overlooked previously.

4.
Talanta ; 186: 279-285, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29784361

RESUMO

We report here the fabrication of solid-contact calcium-selective electrodes (Ca2+-SCISEs) made of a polyurethane acrylate ion-selective membrane (ISM) that was covalently attached to the underlying ion-to-electron transducer (solid-contact). Methacrylate-functionalized poly(3,4-ethylenedioxythiophene) (Meth-PEDOT) and Meth-PEDOT films containing either multiwalled carbon nanotubes (MWCNT) or carboxylated MWCNT (cMWCNT) were used as solid contacts. The solid contacts were deposited by drop-casting on screen-printed electrodes and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and potentiometry. Covalent binding between the solid contact and the ISM was obtained via photopolymerization in order to increase the robustness of the Ca2+-SCISEs. The performance of the Ca2+-SCISEs was studied by measuring their potentiometric response and their sensitivity to light, oxygen and carbon dioxide. Meth-PEDOT was found to be a promising solid-contact material to develop low-cost and easy to prepare ISEs.

5.
RSC Adv ; 8(32): 17645-17655, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35542063

RESUMO

Herein, we report the incorporation of a 10 µm thick reduced graphene oxide (RGO) barrier layer in a plasticized poly(vinyl chloride) (PVC) film as the main constituent in ion-selective membranes used in potentiometric solid-contact ion-selective electrodes (SCISE). Fourier transform infrared attenuated total reflection (FTIR-ATR) and oxygen transmission rate (OTR) measurements showed that the embedded RGO barrier efficiently impedes the diffusion of liquid water, carbon dioxide and oxygen (O2) through the 400 µm thick PVC film, which causes potential instability and irreproducibility of the SCISEs. The measurements revealed that the RGO layer completely blocks the carbon dioxide diffusion, while it fully blocks the water diffusion for 16 h and reduced the OTR by 85% on average. The µm-thick RGO films used in this study were easier to handle and incorporate into host polymers, and form more efficient and robust barriers compared to the mono-, few- and multilayer graphene commonly applied as barrier layers for liquids and gases. We also demonstrated that the FTIR-ATR technique employed in the permeability measurements is a versatile and very sensitive technique for studying the diffusion of small amounts of water and carbon dioxide through graphene-based thin films.

6.
Anal Chem ; 89(4): 2598-2605, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192935

RESUMO

Electrically conducting polymers (ECPs) are one of the most popular types of materials to interface ion-selective membranes (ISMs) with electron-conducting substrates to construct solid-contact ion-selective electrodes (SCISEs). For optimal ion-to-electron transduction and potential stability, the p-doped ECPs with low oxidation potentials such as PPy need to be generally in their conducting form along with providing a sufficiently hydrophobic interface to counteract the aqueous layer formation. The first criterion requires that the ECPs are in their oxidized state, but the high charge density of this state is detrimental for the prevention of the aqueous layer formation. We offer here a solution to this paradox by implementing a highly hydrophobic perfluorinated anion (perfluorooctanesulfonate, PFOS-) as doping ion by which the oxidized form of the ECP becomes hydrophobic. The proof of concept is shown by using polypyrrole (PPy) films doped with PFOS- (PPy-PFOS) as the solid contact in K+-selective SCISEs (K+-SCISE). Prior to applying the plasticized poly(vinyl chloride) ISM, the oxidation state of the electrodeposited PPy-PFOS was adjusted by polarization to the known open-circuit potential of the solid contact in 0.1 M KCl. We show that the prepolarization results in a hydrophobic PPy-PFOS film with a water contact angle of 97 ± 5°, which effectively prevents the aqueous layer formation under the ISM. Under optimal conditions the K+-SCISEs had a very low standard deviation of E0 of only 501.0 ± 0.7 mV that is the best E0 reproducibility reported for ECP-based SCISEs.

7.
Analyst ; 141(10): 2990-7, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27052267

RESUMO

Electropolymerized hydrophobic polyazulene (PAz) based solid-state potassium ion-selective electrodes (SC-ISEs) have been characterized in terms of their suitability for clinical application. Polarization of the PAz solid contact before applying the plasticised poly(vinyl chloride) based K(+)-selective membrane was implemented as a convenient approach to address the general problem of the irreproducible standard potential (E(0)) of SC-ISEs. Using this method, the E(0) reproducibility among different electrodes was, in the worst case, ±7.9 mV (n = 4). The effectiveness of the redox buffer-free approach presented here in stabilizing E(0) is strengthened by the absence of light, oxygen and carbon dioxide sensitivity of the PAz SC-ISEs. No evidence was found for the formation of an aqueous layer for the PAz-based SC-ISEs. Thus the hydrophobic carbon structure of PAz having a water contact angle of 98 ± 11°, which is slightly higher than that for graphene, can apparently efficiently counteract the aqueous layer formation. In terms of the specific application, the PAz solid contact ISEs were found to show a remarkably good potential stability at their first contact with an aqueous sample. We also confirmed that the PAz-based SC-ISEs can be used for the accurate determination of the K(+) concentration in serum solutions. Overall, the PAz solid contact shows significant advantages as compared to the state-of-the-art of electrically conducting polymer based SC-ISEs.

8.
Langmuir ; 31(38): 10599-609, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26327251

RESUMO

The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath the membrane.


Assuntos
Carbono/química , Plastificantes/química , Polímeros/química , Eletrodos , Oxirredução , Propriedades de Superfície
9.
Biomacromolecules ; 15(10): 3655-63, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25162821

RESUMO

In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy significantly improved its film formation ability resulting in composite materials with good mechanical and electrical properties. It is shown that the NFC/PPy-Ag composite films have strong inhibition effect against the growth of Gram-positive bacteria, e.g., Staphylococcus aureus. The electrical conductivity and strong antimicrobial activity makes it possible to use the silver composites in various applications aimed at biomedical treatments and diagnostics. Additionally, we report here the structural and morphological characterization of the composite materials with Fourier-transform infrared spectroscopy, atomic force microscopy, and scanning and transmission electron microscopy techniques.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Celulose/química , Nanopartículas Metálicas/química , Polímeros/química , Pirróis/química , Compostos de Prata/química , Compostos de Prata/farmacologia , Celulose/farmacologia , Condutividade Elétrica , Microscopia Eletrônica de Transmissão/métodos , Polimerização , Polímeros/farmacologia , Pirróis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
10.
Anal Chem ; 85(2): 1006-12, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23249325

RESUMO

The water uptake of plasticized poly(vinyl chloride) (PVC) and silicone rubber (SR) based calcium-selective membranes which are commonly used in solid-contact and coated-wire ion-selective electrodes (SC-ISEs and CWEs) was quantified with the oven based coulometric Karl Fischer (KF) technique. Two different membrane types were studied: (1) the plasticized PVC or SR (RTV 3140) membrane matrix without other added membrane components and (2) the full Ca(2+)-selective membrane formulation consisting of the membrane matrixes, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and calcium ionophore IV (ETH 5234) or calcium ionophore I (ETH 1001). The membranes were contacted for 24 h either asymmetrically from one side or symmetrically from both sides with deionized water (DIW) or 0.1 M solutions of CaCl(2), KCl, or NaCl. It was found that the water uptake was higher for symmetrically contacted membranes. The highest water uptake (0.15-0.17 wt %) was obtained for the plasticized PVC based Ca(2+)-selective membranes in DIW, whereas the water uptake was lower in 0.1 M electrolyte solutions. Symmetrically contacted Ca(2+)-selective SR membranes had much lower water uptake in 0.1 M CaCl(2) (0.03 wt %) than their plasticized PVC counterparts (0.1 wt %). However, the (noncontacted) SR membranes contained initially much more water (0.09-0.15 wt %) than the PVC membranes (0.04-0.07 wt %). Furthermore, in good accordance with the KF measurements, it was verified with FT-IR-attenuated total reflection (ATR) spectroscopy that the water content at the substrate/membrane interface and consequently in the whole membrane was influenced by the electrolyte solution.


Assuntos
Cálcio/química , Técnicas Eletroquímicas , Cloreto de Polivinila/química , Água/química , Eletrodos , Íons/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Anal Chem ; 83(12): 4902-8, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21545175

RESUMO

A new hyphenated method utilizing FT-IR-attenuated total reflection (ATR) and electrochemical impedance spectroscopy (EIS) is presented to correlate the water uptake with concomitant potential and impedance changes of polymeric coated-wire electrodes (CWEs) and solid-contact ion-selective electrodes (SCISEs). The Ca(2+)-selective silicone rubber (RTV 3140) based SCISEs with poly(3-octylthiophene) (POT) as the solid-contact (SC) showed good correlation between a very low water content at the Pt-coated ZnSe substrate/SC interface and a superior potential stability. This is due to the hydrophobicity of both RTV 3140 and POT and the approximately 2 orders of magnitude lower water diffusion coefficients in POT compared to RTV 3140. Practically no potential drift could be observed during 24 h when unconditioned CaSCISEs were contacted with 10(-3) M CaCl(2), in contrast to the Ca(2+)-selective CWEs with considerably higher water uptake and potential drift. The CaSCISEs had a fast Nernstian response with a detection limit of 8 × 10(-9) M Ca(2+) and a good reproducibility and stability of the standard potential, which indicates that the CaSCISEs does not require any conditioning prior to use.

12.
Anal Chem ; 82(22): 9425-32, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20977198

RESUMO

Silicone rubber (SR)-based solid-contact ion-selective electrodes (ISEs) have been prepared for the first time with an electrically conducting polymer as the solid-contact (SC) layer. The Ca(2+)- and Ag(+)-selective electrodes were based on the ionophores ETH 1001 and o-xylylenebis(N,N-diisobutyl dithiocarbamate), respectively, integrated in room temperature vulcanizing silicone rubber (RTV 3140). The SC consisted of a polyaniline nanoparticle dispersion, which was found to considerably lower the impedance of the SCISEs in comparison to the SR-based coated wire electrodes (CWE). For the CaSCISEs, the bulk membrane resistance decreased from 700 MΩ (CaCWE) to 35 MΩ. Both the Ca(2+)- and Ag(+)-selective SCISEs exhibited nanomolar detection limits with fast Nernstian responses down to 10(-8) M. The potential response of the SCISEs was not influenced by light. The selectivities of the CaSCISEs were similar and for the AgSCISE better than their plasticized PVC-based analogues. Thus, SR seems to be a viable alternative to PVC membranes in ISE applications that require low water uptake, good adhesion, and robust and fast potential responses at submicromolar sample concentrations.

13.
Anal Chem ; 81(14): 5925-34, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19527006

RESUMO

For the first time, FTIR-ATR spectroscopy was used to study the water uptake and its diffusion in ion-selective membranes (ISMs) based on poly(acrylates) (PAs) and silicone rubber (SR), which are emerging materials for the fabrication of ISMs for ultratrace analysis. Three different types of PA membranes were studied, consisting of copolymers of methyl methacrylate with n-butyl acrylate, decyl methacrylate, or isodecyl acrylate. Numerical simulations with the finite difference method showed that in most cases the water uptake of the PA and SR membranes could be described with a model consisting of two diffusion coefficients. The diffusion coefficients of the PA membranes were approximately 1 order of magnitude lower than those of plasticized poly(vinyl chloride) (PVC)-based ISMs and only slightly influenced by the membrane matrix composition. However, the simulations indicated that during longer contact times, the water uptake of PA membranes was considerably higher than that for plasticized PVC membranes. Although the diffusion coefficients of the SR and plasticized PVC membranes were similar, the SR membranes had the lowest water uptake of all membranes. This can be beneficial in preventing the formation of detrimental water layers in all-solid-state ion-selective electrodes. With FTIR-ATR, one can monitor the accumulation of different forms of water, i.e., monomeric, dimeric, clustered, and bulk water.

14.
Anal Chem ; 79(22): 8571-7, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17929876

RESUMO

Solid contact potassium-selective electrodes with the internal ion-to-electron transduction layer composed of plasticized poly(vinyl chloride) (PVC) and 2-20% (m/m) of polyaniline (PANI) nanoparticles, with the mean particle size of 8 nm, have been studied in this paper. UV-vis measurements in pH buffer solutions between pH 0 and 12 show that the electrically conducting emeraldine salt (ES) form of PANI has exceptionally good pH stability. Membranes of PANI nanoparticles were mainly in the ES form even at pH 12, in contrast to electrochemically prepared PANI(Cl) films, which are converted completely to the nonconducting form already at pH 6. Long-term UV-vis measurements with the PANI membranes in contact with aqueous buffer solution at pH 7.5 showed no degradation of the ES form. The PANI nanoparticles are homogenously mixed in the PVC-based solid contact (SC) layer. Only the uppermost part of the SC layer is to a minor extent dissolved in the outer potassium-selective PVC membrane. This enabled the preparation of geometrically well-defined inner SC layers, thus improving the reproducibility of the solid contact electrodes and resulting in good mechanical strength between the inner and outer membranes.

15.
Anal Chem ; 79(2): 608-11, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17222026

RESUMO

A novel method for pH measurements between pH 7.5 and 10.4 is reported in this paper. The method combines Raman spectroscopy and the automated sequential injection analysis system (SIA) and makes use of the acid-base properties of a commercially available water dispersion of polyaniline (PANI) nanoparticles with a mean particle size of 46 nm. The useful pH range of the PANI nanoparticles is broader than for conventional acid-base indicators, due to the 1:2 reaction stoichiometry of the proton-ligand complex of the nanoparticles. The pH measurements were conducted with the 633-nm laser excitation wavelength by calculating the difference between the Raman intensities of the primary and reference wavenumbers. In this study, the pH-sensitive CH=CH stretching band at 1422 cm-1 and C-H in-plane bending band of the quinoid form at 1163 cm-1 were chosen as the primary wavenumbers. The presented method is fast and allows pH to be measured with a precision of 0.2 pH unit. The advantage of the proposed method is that the hysteresis effect, which is usually observed for PANI films, can be overcome with the PANI nanoparticles, because a fresh nanoparticle solution is used in each measurement. It should be pointed out, that this work is a fundamental study showing the applicability of Raman spectroscopy in combination with the SIA technique for pH measurements in specific applications, where the conventional glass pH electrode cannot be used.

16.
Anal Chem ; 78(9): 3019-26, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16642988

RESUMO

A new method for optical pH and redox measurements with a commercially available water dispersion of polyaniline (PANI) nanoparticles (mean particle size, 46 nm) is presented. The pH measurements are based on the acid-base equilibrium of PANI and were carried out either by combining both the automated sequential injection analysis (SIA) and UV-visible spectrophotometric techniques or with a fiber-optic light guide. In the former case, the detection was done in continuous mode at lambda = 800 nm by using the SIA technique for transporting the sample to a flow-through cell, which was placed in the light path of the photometer. With the fiber-optic light guide, the detection was done in batch mode at lambda = 400 and 580 nm. In both methods, fresh pH reagent (PANI) solution was used in each measurement, thus overcoming the problem with hysteresis (memory effect), which is usually observed with PANI films. The PANI nanoparticles were characterized with UV-visible spectroscopy in pH buffer solutions between pH 2-12 and a protonation constant of logK(0.5H,L)(H(0.5)L) = 4.4 was calculated from these data. Fast pH measurements can be done between pH 6 and 10.5 depending on the measuring technique. It is possible to determine pH with an accuracy of 0.1 pH unit between pH 8 and 10.5 (RSD, 0.5-2%). Redox transitions typical for PANI films were also observed for water solutions of PANI nanoparticles in the presence of the hexacyanoferrate(II/III) and the iron(II/III) oxalate redox couples. The absorbance at lambda = 875 nm is linearly dependent on the logarithm of the concentration ratio (0.1-10) of the iron oxalate redox couple.


Assuntos
Compostos de Anilina/química , Tecnologia de Fibra Óptica/métodos , Nanopartículas/química , Automação , Tecnologia de Fibra Óptica/instrumentação , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fibras Ópticas , Oxirredução , Tamanho da Partícula , Sensibilidade e Especificidade , Espectrofotometria/métodos , Espectrofotometria Ultravioleta/instrumentação , Espectrofotometria Ultravioleta/métodos , Água/química
17.
Anal Chem ; 76(15): 4387-94, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15283577

RESUMO

A simple and powerful method based on UV-visible spectroscopy is presented for studying the stability of the inner electrically conducting polyaniline (PANI) solid contact (SC) layer in all-solid-state ion-selective electrodes (ISE). The influence of the plasticized poly(vinyl chloride) (PVC) membrane (ISM) composition and the pH of the sample solution on the stability of the solid contact is reported. PANI is used as a model compound in this study, but the method presented is universal and can be applied to different types and combinations of SCs and ISMs. It provides a tool for finding the best combination of conducting polymer and ISM for solid contact ISEs. PANI is deposited electrochemically either on glassy carbon or quartz glass covered with a thin layer of tin oxide, and a K+-selective ISM is deposited on top of the PANI layer. The short-term stability of the inner PANI layer is good for all membrane types in buffer solutions with pH 2, 6, and 9, indicating that the outer plasticized PVC membrane hinders the emeraldine salt-emeraldine base transition of the highly pH sensitive PANI layer. The solid contact K+-selective electrodes studied showed a Nernstian response of 58.2 +/- 0.1 mV/log aK. Significant differences are observed in the long-term stability of the inner PANI layer between the different membrane types. This indicates that water uptake of the PVC membrane and its permeability to OH- ions are critical parameters affecting the stability of the PANI layer. The solid contact electrodes based on PANI may require a composition of the PVC membrane different from those typically used in conventional ISEs with an inner solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...