Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Accid Anal Prev ; 200: 107555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531282

RESUMO

Developing vehicle finite element (FE) models that match real accident-involved vehicles is challenging. This is related to the intricate variety of geometric features and components. The current study proposes a novel method to efficiently and accurately generate case-specific buck models for car-to-pedestrian simulations. To achieve this, we implemented the vehicle side-view images to detect the horizontal position and roundness of two wheels to rectify distortions and deviations and then extracted the mid-section profiles for comparative calculations against baseline vehicle models to obtain the transformation matrices. Based on the generic buck model which consists of six key components and corresponding matrices, the case-specific buck model was generated semi-automatically based on the transformation metrics. Utilizing this image-based method, a total of 12 vehicle models representing four vehicle categories including family car (FCR), Roadster (RDS), small Sport Utility Vehicle (SUV), and large SUV were generated for car-to-pedestrian collision FE simulations in this study. The pedestrian head trajectories, total contact forces, head injury criterion (HIC), and brain injury criterion (BrIC) were analyzed comparatively. We found that, even within the same vehicle category and initial conditions, the variation in wrap around distance (WAD) spans 84-165 mm, in HIC ranges from 98 to 336, and in BrIC fluctuates between 1.25 and 1.46. These findings highlight the significant influence of vehicle frontal shape and underscore the necessity of using case-specific vehicle models in crash simulations. The proposed method provides a new approach for further vehicle structure optimization aiming at reducing pedestrian head injury and increasing traffic safety.


Assuntos
Lesões Encefálicas , Traumatismos Craniocerebrais , Pedestres , Humanos , Acidentes de Trânsito/prevenção & controle , Veículos Automotores , Traumatismos Craniocerebrais/prevenção & controle , Fenômenos Biomecânicos , Caminhada/lesões
2.
Int J Legal Med ; 138(4): 1447-1458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386034

RESUMO

Post-mortem computed tomography (PMCT) enables the creation of subject-specific 3D head models suitable for quantitative analysis such as finite element analysis (FEA). FEA of proposed traumatic events is an objective and repeatable numerical method for assessing whether an event could cause a skull fracture such as seen at autopsy. FEA of blunt force skull fracture in adults with subject-specific 3D models in forensic pathology remains uninvestigated. This study aimed to assess the feasibility of FEA for skull fracture analysis in routine forensic pathology. Five cases with blunt force skull fracture and sufficient information on the kinematics of the traumatic event to enable numerical reconstruction were chosen. Subject-specific finite element (FE) head models were constructed by mesh morphing based on PMCT 3D models and A Detailed and Personalizable Head Model with Axons for Injury Prediction (ADAPT) FE model. Morphing was successful in maintaining subject-specific 3D geometry and quality of the FE mesh in all cases. In three cases, the simulated fracture patterns were comparable in location and pattern to the fractures seen at autopsy/PMCT. In one case, the simulated fracture was in the parietal bone whereas the fracture seen at autopsy/PMCT was in the occipital bone. In another case, the simulated fracture was a spider-web fracture in the frontal bone, whereas a much smaller fracture was seen at autopsy/PMCT; however, the fracture in the early time steps of the simulation was comparable to autopsy/PMCT. FEA might be feasible in forensic pathology in cases with a single blunt force impact and well-described event circumstances.


Assuntos
Análise de Elementos Finitos , Patologia Legal , Imageamento Tridimensional , Fraturas Cranianas , Tomografia Computadorizada por Raios X , Humanos , Fraturas Cranianas/diagnóstico por imagem , Fraturas Cranianas/patologia , Masculino , Patologia Legal/métodos , Adulto , Feminino , Pessoa de Meia-Idade , Autopsia/métodos , Idoso
3.
Traffic Inj Prev ; 25(2): 182-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38095596

RESUMO

OBJECTIVES: Vulnerable road users are globally overrepresented as victims of road traffic injuries. Developing biofidelic male and female pedestrian human body models (HBMs) that represent diverse anthropometries is essential to enhance road safety and propose intervention strategies. METHODS: In this study, 50th percentile male and female pedestrians of the SAFER HBM were developed via a newly developed image registration-based mesh morphing framework. The performance of the HBMs was evaluated by means of a set of cadaver experiments, involving subjects struck laterally by a generic sedan buck. RESULTS: In simulated whole-body pedestrian collisions, the personalized HBMs effectively replicate trajectories of the head and lower body regions, as well as head kinematics, in lateral impacts. The results also demonstrate the personalization framework's capacity to generate personalized HBMs with reliable mesh quality, ensuring robust simulations. CONCLUSIONS: The presented pedestrian HBMs and personalization framework provide robust means to reconstruct and evaluate head impacts in pedestrian-to-vehicle collisions thoroughly and accurately.


Assuntos
Acidentes de Trânsito , Pedestres , Humanos , Masculino , Feminino , Corpo Humano , Modelos Biológicos , Fenômenos Biomecânicos , Caminhada/lesões
4.
Biomech Model Mechanobiol ; 23(1): 207-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37656360

RESUMO

Traumatic head injuries remain a leading cause of death and disability worldwide. Although skull fractures are one of the most common head injuries, the fundamental mechanics of cranial bone and its impact tolerance are still uncertain. In the present study, a strain-rate-dependent material model for cranial bone has been proposed and implemented in subject-specific Finite Element (FE) head models in order to predict skull fractures in five real-world fall accidents. The subject-specific head models were developed following an established image-registration-based personalization pipeline. Head impact boundary conditions were derived from accident reconstructions using personalized human body models. The simulated fracture lines were compared to those visible in post-mortem CT scans of each subject. In result, the FE models did predict the actual occurrence and extent of skull fractures in all cases. In at least four out of five cases, predicted fracture patterns were comparable to ones from CT scans and autopsy reports. The tensile material model, which was tuned to represent rate-dependent tensile data of cortical skull bone from literature, was able to capture observed linear fractures in blunt indentation loading of a skullcap specimen. The FE model showed to be sensitive to modeling parameters, in particular to the constitutive parameters of the cortical tables. Nevertheless, this study provides a currently lacking strain-rate dependent material model of cranial bone that has the capacity to accurately predict linear fracture patterns. For the first time, a procedure to reconstruct occurrences of skull fractures using computational engineering techniques, capturing the all-in-all fracture initiation, propagation and final pattern, is presented.


Assuntos
Traumatismos Craniocerebrais , Fraturas Cranianas , Humanos , Análise de Elementos Finitos , Fenômenos Biomecânicos , Crânio/diagnóstico por imagem , Crânio/lesões , Fraturas Cranianas/diagnóstico por imagem
5.
Front Bioeng Biotechnol ; 11: 1169365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274163

RESUMO

Finite element human body models (HBMs) are becoming increasingly important numerical tools for traffic safety. Developing a validated and reliable HBM from the start requires integrated efforts and continues to be a challenging task. Mesh morphing is an efficient technique to generate personalized HBMs accounting for individual anatomy once a baseline model has been developed. This study presents a new image registration-based mesh morphing method to generate personalized HBMs. The method is demonstrated by morphing four baseline HBMs (SAFER, THUMS, and VIVA+ in both seated and standing postures) into ten subjects with varying heights, body mass indices (BMIs), and sex. The resulting personalized HBMs show comparable element quality to the baseline models. This method enables the comparison of HBMs by morphing them into the same subject, eliminating geometric differences. The method also shows superior geometry correction capabilities, which facilitates converting a seated HBM to a standing one, combined with additional positioning tools. Furthermore, this method can be extended to personalize other models, and the feasibility of morphing vehicle models has been illustrated. In conclusion, this new image registration-based mesh morphing method allows rapid and robust personalization of HBMs, facilitating personalized simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...