Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 189: 80-101, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988785

RESUMO

Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aß), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.


Assuntos
Síndromes Neurotóxicas , Fosfolipases A2 Secretórias , Peptídeos beta-Amiloides/metabolismo , Antígenos de Superfície/metabolismo , Antígenos de Superfície/farmacologia , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catepsinas/metabolismo , Ceramidas , Quimiocinas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Ácido Glutâmico/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Ligantes , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Proteínas Inflamatórias de Macrófagos/farmacologia , Microglia/metabolismo , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Óxido Nítrico/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Neurochem Int ; 148: 105117, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186114

RESUMO

Microglia are the professional immune cells of the brain, which support numerous physiological processes. One of the defensive functions provided by microglia involves secretion of cytotoxins aimed at destroying invading pathogens. It is also recognized that the adverse activation of microglia in diseased brains may lead to secretion of cytotoxic molecules, which could be damaging to the surrounding cells, including neurons. Several of these toxins, such as reactive oxygen and nitrogen species, L-glutamate, and quinolinic acid, are widely recognized and well-studied. This review is focused on a structurally diverse group of less-established microglia neurotoxins, which were selected by applying the two criteria that these molecules 1) can be released by microglia, and 2) have the potential to be directly harmful to neurons. The following 11 molecules are discussed in detail: amyloid beta peptides (Aß); cathepsin (Cat)B and CatD; C-X-C motif chemokine ligand (CXCL)10 and CXCL12 (5-67); high mobility group box (HMGB)1; lymphotoxin (LT)-α; matrix metalloproteinase (MMP)-2 and MMP-9; platelet-activating factor (PAF); and prolyl endopeptidase (PEP). Molecular mechanisms of their release by microglia and neurotoxicity, as well as available evidence implicating their involvement in human neuropathologies are summarized. Further studies on several of the above molecules are warranted to confirm either their microglial origin in the brain or direct neurotoxic effects. In addition, investigations into the differential secretion patterns of neurotoxins by microglia in response to diverse stimuli are required. This research could identify novel therapeutic targets for neurological disorders involving adverse microglial activation.


Assuntos
Microglia/metabolismo , Neurotoxinas/metabolismo , Animais , Humanos , Ativação de Macrófagos , Microglia/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...