Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(19): 7150-7154, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130277

RESUMO

Neutral triple-decker iron and cobalt complexes with a bridging 1,2-diboratabenzene ligand were accessed by reactions of a dilithium 1,2-diboratabenzene reagent with [Cp*FeCl]2 and [Cp*CoCl]2, respectively. While 1,2-diboratabenzene metal complexes are known, these represent the first examples of the ligand bridging two metals.

2.
Chem Commun (Camb) ; 58(6): 867-870, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34935791

RESUMO

A cyclic lithium diborylamide compound was synthesized and crystallographically characterized, revealing strong Li-N bonding in sharp contrast to previous linear diborylamides. Two iron(II) diborylamide complexes were also synthesized, including a 2-coordinate Fe bis(diborylamide) complex. The present cyclic diborylamide represents a new addition to the growing scope of amide ligands.

3.
Chem Sci ; 10(40): 9326-9330, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32110295

RESUMO

A C-H bond activation strategy based on electrochemical activation of a metal hydride is introduced. Electrochemical oxidation of ( tBu4 PCP)IrH4 ( tBu4 PCP is [1,3-( t Bu2PCH2)-C6H3]-) in the presence of pyridine derivatives generates cationic Ir hydride complexes of the type [( tBu4 PCP)IrH(L)]+ (where L = pyridine, 2,6-lutidine, or 2-phenylpyridine). Facile deprotonation of [( tBu4 PCP)IrH(2,6-lutidine)]+ with the phosphazene base tert-butylimino-tris(pyrrolidino)phosphorane, t BuP1(pyrr), results in selective C-H activation of 1,2-difluorobenzene (1,2-DFB) solvent to generate ( tBu4 PCP)Ir(H)(2,3-C6F2H3). The overall electrochemical C-H activation reaction proceeds at room temperature without need for chemical activation by a sacrificial alkene hydrogen acceptor. This rare example of undirected electrochemical C-H activation holds promise for the development of future catalytic processes.

4.
J Am Chem Soc ; 140(25): 7922-7935, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856611

RESUMO

A comprehensive mechanistic study of N2 activation and splitting into terminal nitride ligands upon reduction of the rhenium dichloride complex [ReCl2(PNP)] is presented (PNP- = N(CH2CH2P tBu2)2-). Low-temperature studies using chemical reductants enabled full characterization of the N2-bridged intermediate [{(PNP)ClRe}2(N2)] and kinetic analysis of the N-N bond scission process. Controlled potential electrolysis at room temperature also resulted in formation of the nitride product [Re(N)Cl(PNP)]. This first example of molecular electrochemical N2 splitting into nitride complexes enabled the use of cyclic voltammetry (CV) methods to establish the mechanism of reductive N2 activation to form the N2-bridged intermediate. CV data was acquired under Ar and N2, and with varying chloride concentration, rhenium concentration, and N2 pressure. A series of kinetic models was vetted against the CV data using digital simulations, leading to the assignment of an ECCEC mechanism (where "E" is an electrochemical step and "C" is a chemical step) for N2 activation that proceeds via initial reduction to ReII, N2 binding, chloride dissociation, and further reduction to ReI before formation of the N2-bridged, dinuclear intermediate by comproportionation with the ReIII precursor. Experimental kinetic data for all individual steps could be obtained. The mechanism is supported by density functional theory computations, which provide further insight into the electronic structure requirements for N2 splitting in the tetragonal frameworks enforced by rigid pincer ligands.

5.
Inorg Chem ; 57(4): 1964-1975, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29419289

RESUMO

A series of ruthenium(II) hydrido dinitrogen complexes supported by pincer ligands in different formal oxidation states have been prepared and characterized. Treating a ruthenium dichloride complex supported by the pincer ligand bis(di-tert-butylphosphinoethyl)amine (H-PNP) with reductant or base generates new five-coordinate cis-hydridodinitrogen ruthenium complexes each containing different forms of the pincer ligand. Further ligand transformations provide access to the first isostructural set of complexes featuring all six different forms of the pincer ligand. The conserved cis-hydridodinitrogen structure facilitates characterization of the π-donor, π-acceptor, and/or σ-donor properties of the ligands and assessment of the impact of ligand-centered multielectron/multiproton changes on N2 activation. Crystallographic studies, infrared spectroscopy, and 15N NMR spectroscopy indicate that N2 remains weakly activated in all cases, providing insight into the donor properties of the different pincer ligand states. Ramifications on applications of (pincer)Ru species in catalysis are considered.

6.
J Am Chem Soc ; 139(15): 5305-5308, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28383261

RESUMO

The conversion of metal nitride complexes to ammonia may be essential to dinitrogen fixation. We report a new reduction pathway that utilizes ligating acids and metal-ligand cooperation to effect this conversion without external reductants. Weak acids such as 4-methoxybenzoic acid and 2-pyridone react with nitride complex [(H-PNP)RuN]+ (H-PNP = HN(CH2CH2PtBu2)2) to generate octahedral ammine complexes that are κ2-chelated by the conjugate base. Experimental and computational mechanistic studies reveal the important role of Lewis basic sites proximal to the acidic proton in facilitating protonation of the nitride. The subsequent reduction to ammonia is enabled by intramolecular 2H+/2e- proton-coupled electron transfer from the saturated pincer ligand backbone.

7.
J Phys Chem B ; 120(3): 527-34, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26730460

RESUMO

A series of Boron-dipyrromethene (Bodipy) dyes were used as photosensitizers for photochemical hydrogen production in conjunction with [Co(III)(dmgH)2pyCl] (where dmgH = dimethylglyoximate, py = pyridine) as the catalyst and triethanolamine (TEOA) as the sacrificial electron donor. The Bodipy dyes are fully characterized by electrochemistry, X-ray crystallography, quantum chemistry calculations, femtosecond transient absorption, and time-resolved fluorescence, as well as in long-term hydrogen production assays. Consistent with other recent reports, only systems containing halogenated chromophores were active for hydrogen production, as the long-lived triplet state is necessary for efficient bimolecular electron transfer. Here, it is shown that the photostability of the system improves with Bodipy dyes containing a mesityl group versus a phenyl group, which is attributed to increased electron donating character of the mesityl substituent. Unlike previous reports, the optimal ratio of chromophore to catalyst is established and shown to be 20:1, at which point this bimolecular dye/catalyst system performs 3-4 times better than similar chemically linked systems. We also show that the hydrogen production drops dramatically with excess catalyst concentration. The maximum turnover number of ∼ 700 (with respect to chromophore) is obtained under the following conditions: 1.0 × 10(-4) M [Co(dmgH)2pyCl], 5.0 × 10(-6) M Bodipy dye with iodine and mesityl substituents, 1:1 v:v (10% aqueous TEOA):MeCN (adjusted to pH 7), and irradiation by light with λ > 410 nm for 30 h. This system, containing discrete chromophore and catalyst, is more active than similar linked Bodipy-Co(dmg)2 dyads recently published, which, in conjunction with our other measurements, suggests that the nominal dyads actually function bimolecularly.

8.
Chem Commun (Camb) ; 52(20): 3891-4, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26667995

RESUMO

Neutral, formally Fe(IV) alkylidene species are sought as plausible olefin metathesis catalysts, and the synthesis of several is described herein. The complexes are prepared via nucleophilic attack (Nu = MeLi, PhCH2K, 2-picolyllithium, Me2PCH2Li, MePhPCH2Li, Ph2PCH2Li) at the imine of cationic [mer-{κ-C,N,C-(C6H4-yl)-2-CH=N(2-C6H4-C(iPr)=)}Fe(PMe3)3][B(3,5-CF3-C6H3)4]. In contrast, MeMgCl and mesityllithium displaced and deprotonated bound PMe3, respectively. Structural details are provided for mer-{κ-C,N,C-(C6H4-yl)-2-CH(Bn)N(2-C6H4-C(iPr))}Fe{trans-(PMe3)2}N2 and {κ-C,N,C,P-(C6H4-yl)-2-CH(CH2PMe2)N(2-C6H4-C(iPr)=)}Fe(PMe3)2.

9.
Chem Sci ; 6(8): 4730-4736, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142710

RESUMO

Treatment of cis-Me2Fe(PMe3)4 with di-1,2-(E-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H2), a tetradentate ligand precursor, afforded (bdvp)Fe(PMe3)2 (1-PMe3) and 2 equiv. CH4, via C-H bond activation. Similar treatments with tridentate ligand precursors PhCH[double bond, length as m-dash]NCH2(E-CH[double bond, length as m-dash]CHPh) ((pipp)H2) and PhCH[double bond, length as m-dash]N(2-CCMe-Ph) ((pipa)H) under dinitrogen provided trans-(pipp)Fe(PMe3)2N2 (2) and trans-(pipvd)Fe(PMe3)2N2 (3), respectively; the latter via one C-H bond activation, and a subsequent insertion of the alkyne into the remaining Fe-Me bond. All three Fe(ii) vinyl species were protonated with H[BArF 4] to form the corresponding Fe(iv) alkylidene cations, [(bavp)Fe(PMe3)2][BArF 4] (4-PMe3), [(piap)Fe(PMe3)3][BArF 4] (5), and [(pipad)Fe(PMe3)3][BArF 4] (6). Mössbauer spectroscopic measurements on the formally Fe(ii) and Fe(iv) derivatives revealed isomer shifts within 0.1 mm s-1, reflecting the similarity in their bond distances.

10.
J Am Chem Soc ; 131(26): 9192-4, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19566094

RESUMO

A photocatalytic noble metal-free system for the generation of hydrogen has been constructed using Eosin Y (1) as a photosensitizer, the complex [Co(dmgH)(2)pyCl](2+) (5, dmgH = dimethylglyoximate, py = pyridine) as a molecular catalyst, and triethanolamine (TEOA) as a sacrificial reducing agent. The system produces H(2) with an initial rate of approximately 100 turnovers per hour upon irradiation with visible light (lambda > 450 nm). Addition of free dmgH(2) greatly increases the durability of the system addition of 12 equiv of dmgH(2) (vs cobalt) to the system produces approximately 900 turnovers of H(2) after 14 h of irradiation. The rate of H(2) evolution is maximum at pH = 7 and decreases sharply at more acidic or basic pH. Spectroscopic study of photolysis solutions suggests that hydrogen production occurs through protonation of a Co(I) species to give a Co(III) hydride, which then reacts further by reduction and protolysis to give Co(II) and molecular hydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...