Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(13): 135502, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715098

RESUMO

Elpasolite is the predominant quaternary crystal structure (AlNaK_{2}F_{6} prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ∼2×10^{6} pristine ABC_{2}D_{6} elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV/atom for a training set consisting of 10×10^{3} crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2×10^{6} crystals, 90 unique structures are predicted to be on the convex hull-among which is NFAl_{2}Ca_{6}, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...