Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 13(18): 2137-2146, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876162

RESUMO

Lateral flow assays (LFAs) are immunochromatographic point-of-care devices that have greatly impacted disease diagnosis through their rapid, inexpensive, and easy-to-use form factor. While LFAs have been successful as field-deployable tools, they have a relatively poor limit of detection when compared to more complex methods. Moreover, most design and manufacturing optimization is achieved through time- and resource-intensive brute-force optimization. Despite increased interests in LFA manufacturing, more quantitative tools are needed to study current manufacturing protocols and therefore, optimize and streamline development of these devices further. In this work, we focus on a critical LFA component, colloidal gold conjugated to a detection antibody, one of the most commonly used reporter elements. This study utilizes inductively coupled plasma optical emission spectroscopy (ICP-OES) in conjunction with a lateral flow reader to quantitatively analyze colloidal gold distributions at the read-out test and control lines, as well as residual gold on the conjugate pad and other flow through regions. Our goals are to develop a more rigorous understanding of current LFA designs as well as a quantitative understanding of shortcomings of operational characteristics for future improvement. To our knowledge, this is the first time that ICP-OES has been used to study the initial distribution of colloidal gold on an unused LFA and its redistribution after a test is performed. Using three different brands of commercially available malaria LFAs, gold content was measured within each section of an LFA at varying parasite test concentrations. As expected, the total mass of gold remained unchanged after LFA use; however, the total mass of initial gold and its redistribution varied among manufacturers. Importantly, there are also some inherent inefficiencies that exist in these commercial LFA designs; for example, only 30% of the total gold deposited onto Brand A LFAs binds to the test and control lines, sections of the test that contain interpretable signal. Using information gathered with this method, future devices could be more purposefully engineered to focus on improved binding efficiency, resulting in reduced costs, improved limit of detection, and diminished test-to-test and manufacturer-to-manufacturer variability.


Assuntos
Coloide de Ouro , Sistemas Automatizados de Assistência Junto ao Leito , Bioensaio , Imunoensaio , Análise Espectral
2.
Toxicol Sci ; 176(1): 175-192, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374859

RESUMO

Mitochondrial toxicity drives several adverse health outcomes. Current high-throughput screening assays for chemically induced mitochondrial toxicity typically measure changes to mitochondrial structure and may not detect known mitochondrial toxicants. We adapted a respirometric screening assay (RSA) measuring mitochondrial function to screen ToxCast chemicals in HepG2 cells using a tiered testing strategy. Of 1042 chemicals initially screened at a singlemaximal concentration, 243 actives were identified and rescreened at 7 concentrations. Concentration-response data for 3 respiration phases confirmed activity and indicated a mechanism for 193 mitochondrial toxicants: 149 electron transport chain inhibitors (ETCi), 15 uncouplers and 29 adenosine triphosphate synthase inhibitors. Subsequently, an electron flow assay was used to identify the target complex for 84 of the 149 ETCi. Sixty reference chemicals were used to compare the RSA to existing ToxCast and Tox21 mitochondrial toxicity assays. The RSA was most predictive (accuracy = 90%) of mitochondrial toxicity. The Tox21 mitochondrial membrane potential assay was also highly predictive (accuracy = 87%) of bioactivity but underestimated the potency of well-known ETCi and provided no mechanistic information. The tiered RSA approach accurately identifies and characterizes mitochondrial toxicants acting through diverse mechanisms and at a throughput sufficient to screen large chemical inventories. The electron flow assay provides additional confirmation and detailed mechanistic understanding for ETCi, the most common type of mitochondrial toxicants among ToxCast chemicals. The mitochondrial toxicity screening approach described herein may inform hazard assessment and the in vitro bioactive concentrations used to derive relevant doses for screening level chemical assessment using new approach methodologies.


Assuntos
Mitocôndrias/efeitos dos fármacos , Testes de Toxicidade/métodos , Bioensaio , Substâncias Perigosas , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Potencial da Membrana Mitocondrial , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...