Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684929

RESUMO

Recent backscattering interferometry studies utilise a single channel microfluidic system, typically approximately semicircular in cross-section. Here, we present a complete ray tracing model for on-chip backscattering interferometry with a semicircular cross-section, including the dependence upon polarisation and angle of incidence. The full model is validated and utilised to calculate the expected fringe patterns and sensitivities observed under both normal and oblique angles of incidence. Comparison with experimental data from approximately semicircular channels using the parameters stated shows that they cannot be explained using a semicircular geometry. The disagreement does not impact on the validity of the experimental data, but highlights that the optical mechanisms behind the various modalities of backscattering interferometry would benefit from clarification. From the analysis presented here, we conclude that for reasons of ease of analysis, data quality, and sensitivity for a given radius, capillary-based backscattering interferometry affords numerous benefits over on-chip backscattering interferometry.


Assuntos
Interferometria , Microfluídica
2.
Nanoscale ; 14(22): 8145-8152, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35616244

RESUMO

Direct measurements to determine the degree of surface coverage of nanoparticles by functional moieties are rare, with current strategies requiring a high level of expertise and expensive equipment. Here, a practical method to determine the ratio of the volume of the functionalisation layer to the particle volume based on measuring the refractive index of nanoparticles in suspension is proposed. As a proof of concept, this technique is applied to poly(methyl methacrylate) (PMMA) nanoparticles and semicrystalline carbon dots functionalised with different surface moieties, yielding refractive indices that are commensurate to those from previous literature and Mie theory. In doing so, it is demonstrated that this technique is able to optically detect differences in surface functionalisation or composition of nanometre-sized particles. This non-destructive and rapid method is well-suited for in situ industrial particle characterisation and biological applications.

3.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336326

RESUMO

Capillary-based backscattering interferometry has been used extensively as a tool to measure molecular binding via interferometric refractive index sensing. Previous studies have analysed the fringe patterns created in the backscatter direction. However, polarisation effects, spatial chirps in the fringe pattern and the practical impact of various approximations, and assumptions in existing models are yet to be fully explored. Here, two independent ray tracing approaches are applied, analysed, contrasted, compared to experimental data, and improved upon by introducing explicit polarisation dependence. In doing so, the significance of the inner diameter, outer diameter, and material of the capillary to the resulting fringe pattern and subsequent analysis are elucidated for the first time. The inner diameter is shown to dictate the fringe pattern seen, and therefore, the effectiveness of any dechirping algorithm, demonstrating that current dechirping methods are only valid for a subset of capillary dimensions. Potential improvements are suggested in order to guide further research, increase sensitivity, and promote wider applicability.


Assuntos
Interferometria , Refratometria , Algoritmos , Interferometria/métodos , Refratometria/métodos
4.
Ultramicroscopy ; 150: 79-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25544678

RESUMO

Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast.

5.
Opt Express ; 19(22): 21786-92, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109029

RESUMO

In this paper, we report on a singly resonant optical parametric oscillator (OPO) pumped by an amplified spontaneous emission (ASE) source. The pump focusing conditions allow non-collinear phasematching, which resulted in a 230 nm (190 cm(-1)) spectral bandwidth. Calculations indicate that such phasematching schemes may be used to further broaden OPO spectral bandwidths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...