Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023518

RESUMO

In a variety of species and behavioral contexts, learning and memory formation recruits two neural systems, with initial plasticity in one system being consolidated into the other over time. Moreover, consolidation is known to be selective; that is, some experiences are more likely to be consolidated into long-term memory than others. Here, we propose and analyze a model that captures common computational principles underlying such phenomena. The key component of this model is a mechanism by which a long-term learning and memory system prioritizes the storage of synaptic changes that are consistent with prior updates to the short-term system. This mechanism, which we refer to as recall-gated consolidation, has the effect of shielding long-term memory from spurious synaptic changes, enabling it to focus on reliable signals in the environment. We describe neural circuit implementations of this model for different types of learning problems, including supervised learning, reinforcement learning, and autoassociative memory storage. These implementations involve synaptic plasticity rules modulated by factors such as prediction accuracy, decision confidence, or familiarity. We then develop an analytical theory of the learning and memory performance of the model, in comparison to alternatives relying only on synapse-local consolidation mechanisms. We find that recall-gated consolidation provides significant advantages, substantially amplifying the signal-to-noise ratio with which memories can be stored in noisy environments. We show that recall-gated consolidation gives rise to a number of phenomena that are present in behavioral learning paradigms, including spaced learning effects, task-dependent rates of consolidation, and differing neural representations in short- and long-term pathways.


Assuntos
Rememoração Mental , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Rememoração Mental/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Consolidação da Memória/fisiologia , Humanos , Animais , Memória/fisiologia , Memória de Longo Prazo/fisiologia
2.
Elife ; 132024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968311

RESUMO

Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether ('invariance'), represented in non-interfering subspaces of population activity ('factorization') or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters - lighting, background, camera viewpoint, and object pose - in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.


When looking at a picture, we can quickly identify a recognizable object, such as an apple, applying a single word label to it. Although extensive neuroscience research has focused on how human and monkey brains achieve this recognition, our understanding of how the brain and brain-like computer models interpret other complex aspects of a visual scene ­ such as object position and environmental context ­ remains incomplete. In particular, it was not clear to what extent object recognition comes at the expense of other important scene details. For example, various aspects of the scene might be processed simultaneously. On the other hand, general object recognition may interfere with processing of such details. To investigate this, Lindsey and Issa analyzed 12 monkey and human brain datasets, as well as numerous computer models, to explore how different aspects of a scene are encoded in neurons and how these aspects are represented by computational models. The analysis revealed that preventing effective separation and retention of information about object pose and environmental context worsened object identification in monkey cortex neurons. In addition, the computer models that were the most brain-like could independently preserve the other scene details without interfering with object identification. The findings suggest that human and monkey high level ventral visual processing systems are capable of representing the environment in a more complex way than previously appreciated. In the future, studying more brain activity data could help to identify how rich the encoded information is and how it might support other functions like spatial navigation. This knowledge could help to build computational models that process the information in the same way, potentially improving their understanding of real-world scenes.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Animais , Humanos , Masculino , Macaca mulatta/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Córtex Visual/fisiologia , Feminino , Estimulação Luminosa , Modelos Neurológicos
3.
Elife ; 92020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315010

RESUMO

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


Assuntos
Conectoma , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Animais , Mapeamento Encefálico , Corpos Pedunculados/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...