Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046411

RESUMO

Fungal bloodstream infections are a significant problem in the United States, with an attributable mortality rate of up to 40%. An early diagnosis to direct appropriate therapy has been shown to be critical to reduce mortality rates. Conventional phenotypic methods for fungal detection take several days, which is often too late to impact outcomes. Herein, we describe a cost-effective multiplex assay platform for the rapid detection and differentiation of major clinically relevant Candida species directly from blood culture. This approach utilizes a novel biotin-labeled polymer-mediated signal amplification process combined with targeting rRNA to exploit phylogenetic differences for sensitive and unambiguous species identification; this assay detects seven pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, and C. guilliermondii) simultaneously with very high specificity to the species level in less than 80 min with the limits of detection at 1 × 103 to 10 × 103 CFU/ml or as few as 50 CFU per assay. The performance of the described assay was verified with 67 clinical samples (including mixed multiple-species infections as well), with an overall 100% agreement with matrix-assisted laser desorption ionization (MALDI) mass spectrometry-based reference results. By providing a species identity rapidly, the clinician is aided with information that may direct appropriate therapy sooner and more accurately than current approaches, including PCR-based tests.


Assuntos
Candida/classificação , Candida/isolamento & purificação , Candidemia/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico , Biotina/química , Candida/genética , Candidemia/sangue , Candidemia/diagnóstico , DNA Fúngico/genética , Humanos , Técnicas de Diagnóstico Molecular/normas , RNA Ribossômico 28S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
2.
J Clin Microbiol ; 50(8): 2681-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22675134

RESUMO

Clostridium difficile can carry a genetically variable pathogenicity locus (PaLoc), which encodes clostridial toxins A and B. In hospitals and in the community at large, this organism is increasingly identified as a pathogen. To develop a diagnostic test that combines the strengths of immunoassays (cost) and DNA amplification assays (sensitivity/specificity), we targeted a genetically stable PaLoc region, amplifying tcdB sequences and detecting them by hybridization capture. The assay employs a hot-start isothermal method coupled to a multiplexed chip-based readout, creating a manual assay that detects toxigenic C. difficile with high sensitivity and specificity within 1 h. Assay automation on an electromechanical instrument produced an analytical sensitivity of 10 CFU (95% probability of detection) of C. difficile in fecal samples, along with discrimination against other enteric bacteria. To verify automated assay function, 130 patient samples were tested: 31/32 positive samples (97% sensitive; 95% confidence interval [CI], 82 to 99%) and 98/98 negative samples (100% specific; 95% CI, 95 to 100%) were scored correctly. Large-scale clinical studies are now planned to determine clinical sensitivity and specificity.


Assuntos
Automação Laboratorial/métodos , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Técnicas Bacteriológicas/métodos , Clostridioides difficile/isolamento & purificação , Análise em Microsséries/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Clostridioides difficile/genética , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Humanos , Sensibilidade e Especificidade , Fatores de Tempo
3.
PLoS One ; 5(12): e15004, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21165148

RESUMO

BACKGROUND: The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. METHODOLOGY/PRINCIPAL FINDINGS: We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. CONCLUSIONS/SIGNIFICANCE: We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.


Assuntos
Aptâmeros de Nucleotídeos , Biomarcadores/metabolismo , Proteômica/métodos , Idoso , Medicina Baseada em Evidências , Feminino , Biblioteca Gênica , Técnicas Genéticas , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/metabolismo , Cinética , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA