Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(36): 19508-19512, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651703

RESUMO

Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 µmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.


Assuntos
Nanoestruturas , Nanofios , NAD , Silício , Benchmarking
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...