Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 145(13): 969-982, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35193378

RESUMO

BACKGROUND: The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies. METHODS: To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and simvastatin in a double-blind crossover study. RESULTS: Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of FoxO1. FoxO1 is inhibited by insulin and required for the production of 12α-hydroxylated bile acids, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of Cyp8b1 normalized 12α-hydroxylated bile acid levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30), as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and low-density lipoprotein cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20). CONCLUSIONS: Insulin, by inhibiting FoxO1 in the liver, reduces 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.


Assuntos
Diabetes Mellitus Tipo 1 , Hipercolesterolemia , Hiperlipidemias , Animais , Ácidos e Sais Biliares/metabolismo , LDL-Colesterol , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Insulina , Fígado/metabolismo , Camundongos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo
2.
Endocrinology ; 159(3): 1253-1263, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300910

RESUMO

Insulin coordinates the complex response to feeding, affecting numerous metabolic and hormonal pathways. Forkhead box protein O1 (FoxO1) is one of several signaling molecules downstream of insulin; FoxO1 drives gluconeogenesis and is suppressed by insulin. To determine the role of FoxO1 in mediating other actions of insulin, we studied mice with hepatic deletion of the insulin receptor, FoxO1, or both. We found that mice with deletion of the insulin receptor alone showed not only hyperglycemia but also a 70% decrease in plasma insulin-like growth factor 1 and delayed growth during the first 2 months of life, a 24-fold increase in the soluble leptin receptor and a 19-fold increase in plasma leptin levels. Deletion of the insulin receptor also produced derangements in fatty acid metabolism, with a decrease in the expression of the lipogenic enzymes, hepatic diglycerides, and plasma triglycerides; in parallel, it increased expression of the fatty acid oxidation enzymes. Mice with deletion of both insulin receptor and FoxO1 showed a much more modest phenotype, with normal or near-normal glucose levels, growth, leptin levels, hepatic diglycerides, and fatty acid oxidation gene expression; however, lipogenic gene expression remained low. Taken together, these data reveal the pervasive role of FoxO1 in mediating the effects of insulin on not only glucose metabolism but also other hormonal signaling pathways and even some aspects of lipid metabolism.


Assuntos
Proteína Forkhead Box O1/fisiologia , Fígado/química , Receptor de Insulina/deficiência , Receptor de Insulina/fisiologia , Animais , Glicemia/análise , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Expressão Gênica , Gluconeogênese/genética , Insulina/sangue , Insulina/farmacologia , Insulina/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Leptina/metabolismo , Lipídeos/análise , Lipogênese/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Receptores para Leptina/sangue , Triglicerídeos/sangue
3.
Arterioscler Thromb Vasc Biol ; 35(7): 1589-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023080

RESUMO

OBJECTIVE: Proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds the low-density lipoprotein receptor and targets it for degradation, has emerged as an important regulator of serum cholesterol levels and cardiovascular disease risk. Although much work is currently focused on developing therapies for inhibiting PCSK9, the endogenous regulation of PCSK9, particularly by insulin, remains unclear. The objective of these studies was to determine the effects of insulin on PCSK9 in vitro and in vivo. APPROACH AND RESULTS: Using rat hepatoma cells and primary rat hepatocytes, we found that insulin increased PCSK9 expression and increased low-density lipoprotein receptor degradation in a PCSK9-dependent manner. In parallel, hepatic Pcsk9 mRNA and plasma PCSK9 protein levels were reduced by 55% to 75% in mice with liver-specific knockout of the insulin receptor; 75% to 88% in mice made insulin-deficient with streptozotocin; and 65% in ob/ob mice treated with antisense oligonucleotides against the insulin receptor. However, antisense oligonucleotide-mediated knockdown of insulin receptor in lean, wild-type mice had little effect. In addition, we found that fasting was able to reduce PCSK9 expression by 80% even in mice that lack hepatic insulin signaling. CONCLUSIONS: Taken together, these data indicate that although insulin induces PCSK9 expression, it is not the sole or even dominant regulator of PCSK9 under all conditions.


Assuntos
Insulina/farmacologia , Insulina/fisiologia , Serina Endopeptidases/metabolismo , Animais , Carcinoma Hepatocelular , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Meia-Vida , Hepatócitos/metabolismo , Camundongos Knockout , Camundongos Obesos , Pró-Proteína Convertase 9 , RNA Mensageiro/metabolismo , Ratos , Receptores de LDL/metabolismo , Serina Endopeptidases/efeitos dos fármacos
4.
Nat Commun ; 6: 6498, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25849138

RESUMO

Despite the well-documented association between insulin resistance and cardiovascular disease, the key targets of insulin relevant to the development of cardiovascular disease are not known. Here, using non-biased profiling methods, we identify the enzyme flavin-containing monooxygenase 3 (Fmo3) to be a target of insulin. FMO3 produces trimethylamine N-oxide (TMAO), which has recently been suggested to promote atherosclerosis in mice and humans. We show that FMO3 is suppressed by insulin in vitro, increased in obese/insulin resistant male mice and increased in obese/insulin-resistant humans. Knockdown of FMO3 in insulin-resistant mice suppresses FoxO1, a central node for metabolic control, and entirely prevents the development of hyperglycaemia, hyperlipidemia and atherosclerosis. Taken together, these data indicate that FMO3 is required for FoxO1 expression and the development of metabolic dysfunction.


Assuntos
Aterosclerose/genética , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição Forkhead/genética , Hepatócitos/metabolismo , Obesidade/genética , Oxigenases/genética , RNA Mensageiro/metabolismo , Animais , Aterosclerose/metabolismo , Western Blotting , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos/efeitos dos fármacos , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Oxigenases/efeitos dos fármacos , Oxigenases/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
5.
Nature ; 505(7484): 559-63, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24336217

RESUMO

Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Dieta , Trato Gastrointestinal/microbiologia , Metagenoma , Microbiota , Adulto , Bactérias/efeitos dos fármacos , Bacteroides/efeitos dos fármacos , Bacteroides/genética , Bacteroides/isolamento & purificação , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Bilophila/efeitos dos fármacos , Bilophila/genética , Bilophila/isolamento & purificação , Carnivoridade , Dieta/efeitos adversos , Dieta Vegetariana , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Fezes/química , Fezes/microbiologia , Feminino , Fermentação/efeitos dos fármacos , Microbiologia de Alimentos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/virologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Herbivoria , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Metagenoma/efeitos dos fármacos , Metagenoma/genética , Microbiota/efeitos dos fármacos , Microbiota/genética , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...