Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948831

RESUMO

Gas vesicles (GVs) based on acoustic reporter genes have emerged as potent contrast agents for cellular and molecular ultrasound imaging. These air-filled, genetically encoded protein nanostructures can be expressed in a variety of cell types in vivo to visualize cell location and activity or injected systemically to label and monitor tissue function. Distinguishing GVs from tissue signal deep inside intact organisms requires imaging approaches such as amplitude modulation (AM) or collapse-based pulse sequences, however they have limitations in sensitivity or require irreversible collapse of the GVs that restricts its scope for imaging dynamic cellular processes. To address these limitations, this study explores the utility of harmonic imaging to enhance the sensitivity of non-destructive imaging of GVs and cellular processes. Traditional fundamental-frequency imaging utilizing cross-wave AM (xAM) sequences has been deemed optimal for GV imaging. Contrary to this, we hypothesize that harmonic imaging, integrated with xAM could significantly elevate GV detection sensitivity. To verify our hypothesis, we conducted imaging on tissue-mimicking phantoms embedded with purified GVs, mammalian cells genetically modified to express GVs, and live mice after systemic GV infusion. Our findings reveal that harmonic xAM (HxAM) imaging markedly surpasses traditional xAM in isolating GVs' nonlinear acoustic signature, showcasing significant enhancements in signal-to-background and contrast-to-background ratios across all tested samples. Further investigation into the backscattered spectra elucidates the efficacy of harmonic imaging in conjunction with xAM. HxAM imaging enables the detection of lower concentrations of GVs and cells with ultrasound and extends the imaging depth in vivo by up to 20% and imaging performance metrics by up to 10dB. These advancements bolster the capabilities of ultrasound for molecular and cellular imaging, underscoring the potential of using harmonic signals to amplify GV detection.

2.
Adv Mater ; 36(28): e2307106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409678

RESUMO

Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography is challenging due to the size and stability constraints of conventional bubble-based agents. Here bicones, truly tiny acoustic contrast agents based on gas vesicles (GVs), a unique class of air-filled protein nanostructures naturally produced in buoyant microbes, are described. It is shown that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.


Assuntos
Meios de Contraste , Ultrassonografia , Animais , Ultrassonografia/métodos , Meios de Contraste/química , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Linhagem Celular Tumoral , Acústica
3.
Nano Lett ; 23(23): 10748-10757, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37983479

RESUMO

Gas vesicles (GVs) are genetically encoded, air-filled protein nanostructures of broad interest for biomedical research and clinical applications, acting as imaging and therapeutic agents for ultrasound, magnetic resonance, and optical techniques. However, the biomedical applications of GVs as systemically injectable nanomaterials have been hindered by a lack of understanding of GVs' interactions with blood components, which can significantly impact in vivo behavior. Here, we investigate the dynamics of GVs in the bloodstream using a combination of ultrasound and optical imaging, surface functionalization, flow cytometry, and mass spectrometry. We find that erythrocytes and serum proteins bind to GVs and shape their acoustic response, circulation time, and immunogenicity. We show that by modifying the GV surface we can alter these interactions and thereby modify GVs' in vivo performance. These results provide critical insights for the development of GVs as agents for nanomedicine.


Assuntos
Nanoestruturas , Proteínas , Ultrassonografia/métodos , Proteínas/química , Meios de Contraste , Nanoestruturas/química , Imageamento por Ressonância Magnética/métodos
4.
J Am Chem Soc ; 145(41): 22442-22455, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791901

RESUMO

In 2015, we reported a photochemical method for directed C-C bond cleavage/radical fluorination of relatively unstrained cyclic acetals using Selectfluor and catalytic 9-fluorenone. Herein, we provide a detailed mechanistic study of this reaction, during which it was discovered that the key electron transfer step proceeds through substrate oxidation from a Selectfluor-derived N-centered radical intermediate (rather than through initially suspected photoinduced electron transfer). This finding led to proof of concept for two new methodologies, demonstrating that unstrained C-C bond fluorination can also be achieved under chemical and electrochemical conditions. Moreover, as C-C and C-H bond fluorination reactions are both theoretically possible on 2-aryl-cycloalkanone acetals and would involve the same reactive intermediate, we studied the competition between single-electron transfer (SET) and apparent hydrogen-atom transfer (HAT) pathways in acetal fluorination reactions using density functional theory. Finally, these analyses were applied more broadly to other classes of C-H and C-C bond fluorination reactions developed over the past decade, addressing the feasibility of SET processes masquerading as HAT in C-H fluorination literature.

5.
Proc Natl Acad Sci U S A ; 120(39): e2309822120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725651

RESUMO

External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.


Assuntos
Fontes Geradoras de Energia , Polímeros , Transdutores , Extremidade Superior
6.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546852

RESUMO

Gas vesicles (GVs) are genetically encoded, air-filled protein nanostructures of broad interest for biomedical research and clinical applications, acting as imaging and therapeutic agents for ultrasound, magnetic resonance, and optical techniques. However, the biomedical applications of GVs as a systemically injectable nanomaterial have been hindered by a lack of understanding of GVs' interactions with blood components, which can significantly impact in vivo performance. Here, we investigate the dynamics of GVs in the bloodstream using a combination of ultrasound and optical imaging, surface functionalization, flow cytometry, and mass spectrometry. We find that erythrocytes and serum proteins bind to GVs and shape their acoustic response, circulation time, and immunogenicity. We show that by modifying the GV surface, we can alter these interactions and thereby modify GVs' in vivo performance. These results provide critical insights for the development of GVs as agents for nanomedicine.

7.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425749

RESUMO

Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography has been challenging due to the size and stability constraints of conventional bubble-based agents. Here we describe bicones, truly tiny acoustic contrast agents based on gas vesicles, a unique class of air-filled protein nanostructures naturally produced in buoyant microbes. We show that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.

8.
Res Sq ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214802

RESUMO

Functional ultrasound imaging enables sensitive, high-resolution imaging of neural activity in freely behaving animals and human patients. However, the skull acts as an aberrating and absorbing layer for sound waves, leading to most functional ultrasound experiments being conducted after skull removal. In pre-clinical settings, craniotomies are often covered with a polymethylpentene film, which offers limited longitudinal imaging, due to the film's poor conformability, and limited mechanical protection, due to the film's low stiffness. Here, we introduce a skull replacement consisting of a microstructured, conformal acoustic window based on mechanical metamaterials, designed to offer high stiffness-to-density ratio and sonotransparency. We test the acoustic window in vivo, via terminal and survival experiments on small animals. Long-term biocompatibility and lasting signal sensitivity are demonstrated over a long period of time (> 4 months) by conducting ultrasound imaging in mouse models implanted with the metamaterial skull prosthesis.

9.
Nat Methods ; 18(8): 945-952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354290

RESUMO

Acoustic reporter genes (ARGs) that encode air-filled gas vesicles enable ultrasound-based imaging of gene expression in genetically modified bacteria and mammalian cells, facilitating the study of cellular function in deep tissues. Despite the promise of this technology for biological research and potential clinical applications, the sensitivity with which ARG-expressing cells can be visualized is currently limited. Here we present burst ultrasound reconstructed with signal templates (BURST)-an ARG imaging paradigm that improves the cellular detection limit by more than 1,000-fold compared to conventional methods. BURST takes advantage of the unique temporal signal pattern produced by gas vesicles as they collapse under acoustic pressure above a threshold defined by the ARG. By extracting the unique pattern of this signal from total scattering, BURST boosts the sensitivity of ultrasound to image ARG-expressing cells, as demonstrated in vitro and in vivo in the mouse gastrointestinal tract and liver. Furthermore, in dilute cell suspensions, BURST imaging enables the detection of gene expression in individual bacteria and mammalian cells. The resulting abilities of BURST expand the potential use of ultrasound for non-invasive imaging of cellular functions.


Assuntos
Escherichia coli/genética , Trato Gastrointestinal/metabolismo , Genes Reporter/genética , Fígado/metabolismo , Imagens de Fantasmas , Imagem Individual de Molécula/métodos , Ultrassonografia/métodos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
10.
Appl Phys Lett ; 118(24): 244102, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34176950

RESUMO

Ultrasound is playing an emerging role in molecular and cellular imaging thanks to new micro- and nanoscale contrast agents and reporter genes. Acoustic methods for the selective in vivo detection of these imaging agents are needed to maximize their impact in biology and medicine. Existing ultrasound pulse sequences use the nonlinearity in contrast agents' response to acoustic pressure to distinguish them from mostly linear tissue scattering. However, such pulse sequences typically scan the sample using focused transmissions, resulting in a limited frame rate and restricted field of view. Meanwhile, existing wide-field scanning techniques based on plane wave transmissions suffer from limited sensitivity or nonlinear artifacts. To overcome these limitations, we introduce an ultrafast nonlinear imaging modality combining amplitude-modulated pulses, multiplane wave transmissions, and selective coherent compounding. This technique achieves contrast imaging sensitivity comparable to much slower gold-standard amplitude modulation sequences and enables the acquisition of larger and deeper fields of view, while providing a much faster imaging framerate of 3.2 kHz. Additionally, it enables simultaneous nonlinear and linear image formation and allows concurrent monitoring of phenomena accessible only at ultrafast framerates, such as blood volume variations. We demonstrate the performance of this ultrafast amplitude modulation technique by imaging gas vesicles, an emerging class of genetically encodable biomolecular contrast agents, in several in vitro and in vivo contexts. These demonstrations include the rapid discrimination of moving contrast agents and the real-time monitoring of phagolysosomal function in the mouse liver.

11.
Biophys J ; 120(13): 2701-2709, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34022233

RESUMO

The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs.


Assuntos
Nanopartículas , Citoplasma , DNA , Substâncias Macromoleculares , Eletricidade Estática
12.
Neuron ; 108(1): 93-110, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33058769

RESUMO

Visualizing and perturbing neural activity on a brain-wide scale in model animals and humans is a major goal of neuroscience technology development. Established electrical and optical techniques typically break down at this scale due to inherent physical limitations. In contrast, ultrasound readily permeates the brain, and in some cases the skull, and interacts with tissue with a fundamental resolution on the order of 100 µm and 1 ms. This basic ability has motivated major efforts to harness ultrasound as a modality for large-scale brain imaging and modulation. These efforts have resulted in already-useful neuroscience tools, including high-resolution hemodynamic functional imaging, focused ultrasound neuromodulation, and local drug delivery. Furthermore, recent breakthroughs promise to connect ultrasound to neurons at the genetic level for biomolecular imaging and sonogenetic control. In this article, we review the state of the art and ongoing developments in ultrasonic neurotechnology, building from fundamental principles to current utility, open questions, and future potential.


Assuntos
Encéfalo/diagnóstico por imagem , Sistemas de Liberação de Medicamentos/métodos , Ecoencefalografia/métodos , Imagem Molecular/métodos , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica/efeitos da radiação , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Neuroimagem Funcional , Hemodinâmica , Humanos , Proteínas , Terapia por Ultrassom , Ultrassonografia , Ultrassonografia Doppler Transcraniana/métodos
13.
ACS Nano ; 14(9): 12210-12221, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32902951

RESUMO

Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions of the innate immune system. However, the assessment of these functions in vivo is challenging because most nanoscale contrast agents compatible with noninvasive imaging techniques are made from nonbiodegradable synthetic materials that do not undergo regular lysosomal degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, pharmacology, immunohistology, and live-cell optical microscopy, we show that after intravenous injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By noninvasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte deficiency and nonalcoholic fatty liver disease. The combination of proteolytically degradable nanoscale contrast agents and quantitative ultrasound imaging thus enables noninvasive functional imaging of cellular degradative processes.


Assuntos
Lisossomos , Fagocitose , Animais , Meios de Contraste , Fígado/diagnóstico por imagem , Ultrassonografia
14.
Neuroimage ; 209: 116467, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846757

RESUMO

Hemodynamic functional ultrasound imaging (fUS) of neural activity provides a unique combination of spatial coverage, spatiotemporal resolution and compatibility with freely moving animals. However, deep and transcranial monitoring of brain activity and the imaging of dynamics in slow-flowing blood vessels remains challenging. To enhance fUS capabilities, we introduce biomolecular hemodynamic enhancers based on gas vesicles (GVs), genetically encodable ultrasound contrast agents derived from buoyant photosynthetic microorganisms. We show that intravenously infused GVs enhance ultrafast Doppler ultrasound contrast and visually-evoked hemodynamic contrast in transcranial fUS of the mouse brain. This hemodynamic contrast enhancement is smoother than that provided by conventional microbubbles, allowing GVs to more reliably amplify neuroimaging signals.


Assuntos
Encéfalo/diagnóstico por imagem , Meios de Contraste , Neuroimagem Funcional/métodos , Hemodinâmica , Aumento da Imagem/métodos , Microbolhas , Ultrassonografia Doppler Transcraniana/métodos , Animais , Meios de Contraste/administração & dosagem , Neuroimagem Funcional/normas , Aumento da Imagem/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Reprodutibilidade dos Testes , Ultrassonografia Doppler Transcraniana/normas
15.
AIChE J ; 64(8): 2927-2933, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30555168

RESUMO

Ultrasound and hyperpolarized magnetic resonance imaging enable the visualization of biological processes in deep tissues. However, few molecular contrast agents are available to connect these modalities to specific aspects of biological function. We recently discovered that a unique class of gas-filled protein nanostructures known as gas vesicles could serve as nanoscale molecular reporters for these modalities. However, the need to produce these nanostructures via expression in specialized cultures of cyanobacteria or haloarchaea limits their broader adoption by other laboratories and hinders genetic engineering of their properties. Here, we describe recombinant expression and purification of Bacillus megaterium gas vesicles using a common laboratory strain of Escherichia coli, and characterize the physical, acoustic and magnetic resonance properties of these nanostructures. Recombinantly expressed gas vesicles produce ultrasound and hyperpolarized 129Xe MRI contrast at sub-nanomolar concentrations, thus validating a simple platform for their production and engineering.

16.
J Am Chem Soc ; 138(20): 6598-609, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27136383

RESUMO

We have discovered a highly regioselective aminofluorination of cyclopropanes. Remarkably, four unique sets of conditions-two photochemical, two purely chemical-generated the same aminofluorinated adducts in good to excellent yields. The multiple, diverse ways in which the reaction could be initiated provided valuable clues that led to the proposal of a "unifying" chain propagation mechanism beyond initiation, tied by a common intermediate. In all, the proposed mechanism herein is substantiated by product distribution studies, kinetic analyses, LFERs, Rehm-Weller estimations of ΔGET, competition experiments, KIEs, fluorescence data, and DFT calculations. From a more physical standpoint, transient-absorption experiments have allowed direct spectroscopic observation of radical ion intermediates (previously only postulated or probed indirectly in photochemical fluorination systems) and, consequently, have provided kinetic support for chain propagation. Lastly, calculations suggest that solvent may play an important role in the cyclopropane ring-opening step.

17.
J Org Chem ; 79(18): 8895-9, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25137438

RESUMO

We offer a mild, metal-free sp(3) C-H fluorination alternative using Selectfluor and a substoichiometric amount of triethylborane--an established radical initiator in the presence of O2. This radical-chain-based synthetic method is particularly noteworthy as an offspring of the insight gained from a mechanistic study of copper-promoted aliphatic fluorination, constructively turning O2 from an enemy to an ally. Furthermore, BEt3/O2 is a preferred initiator in industrial processes, as it is economical, is low in toxicity, and lends way to easier workup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...