Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 14(1): 326-341, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511343

RESUMO

BACKGROUND: Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS: To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 µL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS: The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2  = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2  = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2  = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS: Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.


Assuntos
Leptina , PPAR gama , Idoso , Animais , Humanos , Camundongos , Trifosfato de Adenosina , Dano ao DNA , Camundongos Endogâmicos mdx , Músculos/metabolismo , PPAR gama/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 827523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282453

RESUMO

Cold exposure promotes fat oxidation and modulates the energy metabolism in adipose tissue through multiple mechanisms. However, it is still unclear about heat-generating capacity and lipid mobilization of different fat depots without functional mitochondrial uncoupling protein 1 (UCP1). In this study, we kept finishing pigs (lack a functional UCP1 gene) under cold (5-7°C) or room temperature (22-25°C) and determined the effects of overnight cold exposure on fatty acid composition and transcriptional profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). And the plasma metabolomes of porcine was also studied by LC-MS-based untargeted metabolomics. We found that the saturated fatty acids (SFAs) content was decreased in SAT upon cold exposure. While in VAT, the relative content of lauric acid (C12:0), myristic acid (C14:0) and lignoceric acid (C24:0) were decreased without affecting total SFA content. RNA-seq results showed SAT possess active organic acid metabolism and energy mobilization upon cold exposure. Compared with SAT, cold-induced transcriptional changes were far less broad in VAT, and the differentially expressed genes (DEGs) were mainly enriched in fat cell differentiation and cell proliferation. Moreover, we found that the contents of organic acids like creatine, acamprosate, DL-3-phenyllactic acid and taurine were increased in plasma upon overnight cold treatment, suggesting that cold exposure induced lipid and fatty acid metabolism in white adipose tissue (WAT) might be regulated by functions of organic acids. These results provide new insights into the effects of short-term cold exposure on lipid metabolism in adipose tissues without functional UCP1.


Assuntos
Tecido Adiposo Branco , Gordura Subcutânea , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ácidos Graxos/metabolismo , Gordura Subcutânea/metabolismo , Suínos , Proteína Desacopladora 1/metabolismo
3.
Crit Rev Food Sci Nutr ; 62(3): 764-782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33021403

RESUMO

Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Desenvolvimento Muscular , Músculo Esquelético , Regeneração
4.
J Cell Physiol ; 237(3): 1639-1647, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796916

RESUMO

Adipocytes are the key constituents of adipose tissue, and their de-differentiation process has been widely observed in physiological and pathological conditions. For obese people, the promotion of adipocyte de-differentiation or maintenance of an undifferentiated state of adipocytes may help to improve their metabolic condition. Thus, understanding the regulatory mechanisms of adipocyte de-differentiation is necessary for treating metabolic diseases. Attractively, in addition to intracellular signals regulating adipocyte de-differentiation, external factors such as temperature and pressure also affect adipocyte de-differentiation. In this review, we summarize the recent progress in the field and discuss the regulatory roles and mechanisms of involved endogenous and exogenous factors during the process of de-differentiation.


Assuntos
Adipócitos , Doenças Metabólicas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diferenciação Celular , Humanos , Doenças Metabólicas/metabolismo , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...