Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0047823, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436256

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.

2.
Biochemistry ; 61(4): 217-227, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35073057

RESUMO

The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Quimera/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II/metabolismo , Ácido Graxo Sintases/química , Ácidos Graxos/metabolismo , Simulação de Dinâmica Molecular , Policetídeo Sintases/química , Policetídeos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
3.
Sci Transl Med ; 13(621): eabf4692, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818053

RESUMO

Whether and how probiotics promote human health is a controversial issue. Their claimed benefit for counteracting gastrointestinal infection is linked predominantly to reducing pathogen abundance within the intestinal microbiota. Less understood mechanistically is the reported value that probiotics could have in reducing systemic infections. Enterococcus faecalis is an opportunistic pathogen that causes systemic infection after translocation through the intestinal epithelium, particularly in hospitalized and immune-depleted patients receiving antibiotic therapy. In this study, we used an E. faecalis mouse infection model with wild-type and isogenic mutant strains deficient in genes of the E. faecalis Fsr (fecal streptococci regulator) quorum-sensing system. We show that E. faecalis translocation from the mouse gut into the blood is mediated by the Fsr quorum-sensing system through production of the protease GelE, which compromises intestinal epithelium integrity. Furthermore, we demonstrate that orally administered probiotic Bacillus subtilis spores blocked E. faecalis translocation from the gut to the bloodstream and subsequent systemic infection in mice by inhibiting Fsr activity. These findings demonstrate that a key aspect of Enterococcus pathogenesis is controlled by quorum sensing, which can be targeted with probiotic Bacillus spores.


Assuntos
Bacillus , Bacteriemia , Probióticos , Administração Oral , Animais , Bacillus/metabolismo , Bacteriemia/prevenção & controle , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Probióticos/farmacologia , Probióticos/uso terapêutico , Esporos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...