Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282024

RESUMO

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Assuntos
Transporte Axonal , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicólise , Homeostase , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
2.
Nat Neurosci ; 27(1): 34-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996528

RESUMO

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Axônios/fisiologia , Denervação , Proteínas de Ligação a DNA/genética , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Neurônios Motores/metabolismo , Estatmina/genética , Estatmina/metabolismo
3.
J Biol Chem ; 299(12): 105475, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981208

RESUMO

Heterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited. Here, we tested the efficacy of ASOs as enhancers of progranulin expression by sterically blocking the miR-29b binding site in the 3' UTR of the human GRN mRNA. We found 16 ASOs that increase progranulin protein in a dose-dependent manner in neuroglioma cells. A subset of these ASOs also increased progranulin protein in iPSC-derived neurons and in a humanized GRN mouse model. In FRET-based assays, the ASOs effectively competed for miR-29b from binding to the GRN 3' UTR RNA. The ASOs increased levels of newly synthesized progranulin protein by increasing its translation, as revealed by polysome profiling. Together, our results demonstrate that ASOs can be used to effectively increase target protein levels by partially blocking miR binding sites. This ASO strategy may be therapeutically feasible for progranulin-deficient FTD as well as other conditions of haploinsufficiency.


Assuntos
Demência Frontotemporal , MicroRNAs , Oligonucleotídeos Antissenso , Progranulinas , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Sítios de Ligação , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Mutação , Oligonucleotídeos Antissenso/genética , Progranulinas/genética , RNA Mensageiro/genética
4.
Nat Commun ; 14(1): 6547, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848409

RESUMO

PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Humanos , Camundongos , Animais , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Tubulina (Proteína)/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Síndrome , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Transporte Vesicular/genética
5.
Res Sq ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292715

RESUMO

Background: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.

6.
Mol Psychiatry ; 28(6): 2445-2461, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012334

RESUMO

TAR DNA binding protein 43 (TDP-43) pathology is a key feature of over 95% of amyotrophic lateral sclerosis (ALS) and nearly half of frontotemporal dementia (FTD) cases. The pathogenic mechanisms of TDP-43 dysfunction are poorly understood, however, activation of cell stress pathways may contribute to pathogenesis. We, therefore, sought to identify which cell stress components are critical for driving disease onset and neurodegeneration in ALS and FTD. We studied the rNLS8 transgenic mouse model, which expresses human TDP-43 with a genetically-ablated nuclear localisation sequence within neurons of the brain and spinal cord resulting in cytoplasmic TDP-43 pathology and progressive motor dysfunction. Amongst numerous cell stress-related biological pathways profiled using qPCR arrays, several critical integrated stress response (ISR) effectors, including CCAAT/enhancer-binding homologous protein (Chop/Ddit3) and activating transcription factor 4 (Atf4), were upregulated in the cortex of rNLS8 mice prior to disease onset. This was accompanied by early up-regulation of anti-apoptotic gene Bcl2 and diverse pro-apoptotic genes including BH3-interacting domain death agonist (Bid). However, pro-apoptotic signalling predominated after onset of motor phenotypes. Notably, pro-apoptotic cleaved caspase-3 protein was elevated in the cortex of rNLS8 mice at later disease stages, suggesting that downstream activation of apoptosis drives neurodegeneration following failure of early protective responses. Unexpectedly, suppression of Chop in the brain and spinal cord using antisense oligonucleotide-mediated silencing had no effect on overall TDP-43 pathology or disease phenotypes in rNLS8 mice. Cytoplasmic TDP-43 accumulation therefore causes very early activation of ISR and both anti- and pro-apoptotic signalling that switches to predominant pro-apoptotic activation later in disease. These findings suggest that precise temporal modulation of cell stress and death pathways may be beneficial to protect against neurodegeneration in ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Transgênicos
7.
Mol Ther Nucleic Acids ; 32: 13-27, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36950280

RESUMO

Optic neuropathy is a group of optic nerve (ON) diseases with progressive degeneration of ON and retinal ganglion cells (RGCs). The lack of neuroprotective treatments is a central challenge for this leading cause of irreversible blindness. SARM1 (sterile α and TIR motif-containing protein 1) has intrinsic nicotinamide adenine dinucleotide (NAD+) hydrolase activity that causes axon degeneration by degrading axonal NAD+ significantly after activation by axon injury. SARM1 deletion is neuroprotective in many, but not all, neurodegenerative disease models. Here, we compare two therapy strategies for SARM1 inhibition, antisense oligonucleotide (ASO) and CRISPR, with germline SARM1 deletion in the neuroprotection of three optic neuropathy mouse models. This study reveals that, similar to germline SARM1 knockout in every cell, local retinal SARM1 ASO delivery and adeno-associated virus (AAV)-mediated RGC-specific CRISPR knockdown of SARM1 provide comparable neuroprotection to both RGC somata and axons in the silicone oil-induced ocular hypertension (SOHU) glaucoma model but only protect RGC axons, not somata, after traumatic ON injury. Surprisingly, neither of these two therapy strategies of SARM1 inhibition nor SARM1 germline knockout (KO) benefits RGC or ON survival in the experimental autoimmune encephalomyelitis (EAE)/optic neuritis model. Our studies therefore suggest that SARM1 inhibition by local ASO delivery or AAV-mediated CRISPR is a promising neuroprotective gene therapy strategy for traumatic and glaucomatous optic neuropathies but not for demyelinating optic neuritis.

8.
Science ; 379(6637): 1140-1149, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927019

RESUMO

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Assuntos
Proteínas de Ligação a DNA , Edição de Genes , Poliadenilação , Splicing de RNA , Estatmina , Proteinopatias TDP-43 , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Estatmina/genética , Estatmina/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/terapia , Sítios de Splice de RNA , Oligonucleotídeos Antissenso/genética , Crescimento Neuronal
9.
PLoS One ; 18(3): e0282822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893203

RESUMO

A common cause of frontotemporal dementia (FTD) are nonsense mutations in the progranulin (GRN) gene. Because nonsense mutations activate the nonsense-mediated RNA decay (NMD) pathway, we sought to inhibit this RNA turnover pathway as a means to increase progranulin levels. Using a knock-in mouse model harboring a common patient mutation, we tested whether either pharmacological or genetic inhibition of NMD upregulates progranulin in these GrnR493X mice. We first examined antisense oligonucleotides (ASOs) targeting an exonic region in GrnR493X mRNA predicted to block its degradation by NMD. As we previously reported, these ASOs effectively increased GrnR493X mRNA levels in fibroblasts in vitro. However, following CNS delivery, we found that none of the 8 ASOs we tested increased Grn mRNA levels in the brains of GrnR493X mice. This result was obtained despite broad ASO distribution in the brain. An ASO targeting a different mRNA was effective when administered in parallel to wild-type mice. As an independent approach to inhibit NMD, we examined the effect of loss of an NMD factor not required for embryonic viability: UPF3b. We found that while Upf3b deletion effectively perturbed NMD, it did not increase Grn mRNA levels in Grn+/R493X mouse brains. Together, our results suggest that the NMD-inhibition approaches that we used are likely not viable for increasing progranulin levels in individuals with FTD caused by nonsense GRN mutations. Thus, alternative approaches should be pursued.


Assuntos
Demência Frontotemporal , Camundongos , Animais , Progranulinas/genética , Demência Frontotemporal/genética , RNA , Códon sem Sentido , RNA Mensageiro/genética , Degradação do RNAm Mediada por Códon sem Sentido , Modelos Animais de Doenças , Proteínas de Ligação a RNA/genética
10.
Res Sq ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747781

RESUMO

Neurodevelopmental disorders (NDDs) are frequently associated with dendritic abnormalities in pyramidal neurons that affect arbor complexity, spine density, and synaptic communication 1,2. The underlying genetic causes are often complex, obscuring the molecular pathways that drive these disorders 3. Next-generation sequencing has identified recurrent de novo missense mutations in a handful of genes associated with NDDs, offering a unique opportunity to decipher the molecular pathways 4. One such gene is PACS1, which encodes the multi-functional trafficking protein PACS1 (or PACS-1); a single recurrent de novo missense mutation, c607C>T (PACS1R203W), causes developmental delay and intellectual disability (ID) 5,6. The processes by which PACS1R203W causes PACS1 syndrome are unknown, and there is no curative treatment. We show that PACS1R203W increases the interaction between PACS1 and the α-tubulin deacetylase HDAC6, elevating enzyme activity and appropriating control of its posttranscriptional regulation. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi to fragment and enter developing neurites, leading to increased dendrite arborization. The dendrites, however, are beset with diminished spine density and fewer functional synapses, characteristic of ID pathology. Treatment of PACS1 syndrome mice with PACS1- or HDAC6-targeting antisense oligonucleotides restores neuronal structure and synaptic transmission, suggesting PACS1R203W/HDAC6 may be targeted for treating PACS1 syndrome neuropathology.

11.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835624

RESUMO

For SMA patients with only two SMN2 copies, available therapies might be insufficient to counteract lifelong motor neuron (MN) dysfunction. Therefore, additional SMN-independent compounds, supporting SMN-dependent therapies, might be beneficial. Neurocalcin delta (NCALD) reduction, an SMA protective genetic modifier, ameliorates SMA across species. In a low-dose SMN-ASO-treated severe SMA mouse model, presymptomatic intracerebroventricular (i.c.v.) injection of Ncald-ASO at postnatal day 2 (PND2) significantly ameliorates histological and electrophysiological SMA hallmarks at PND21. However, contrary to SMN-ASOs, Ncald-ASOs show a shorter duration of action limiting a long-term benefit. Here, we investigated the longer-term effect of Ncald-ASOs by additional i.c.v. bolus injection at PND28. Two weeks after injection of 500 µg Ncald-ASO in wild-type mice, NCALD was significantly reduced in the brain and spinal cord and well tolerated. Next, we performed a double-blinded preclinical study combining low-dose SMN-ASO (PND1) with 2× i.c.v. Ncald-ASO or CTRL-ASO (100 µg at PND2, 500 µg at PND28). Ncald-ASO re-injection significantly ameliorated electrophysiological defects and NMJ denervation at 2 months. Moreover, we developed and identified a non-toxic and highly efficient human NCALD-ASO that significantly reduced NCALD in hiPSC-derived MNs. This improved both neuronal activity and growth cone maturation of SMA MNs, emphasizing the additional protective effect of NCALD-ASO treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Camundongos , Animais , Humanos , Atrofia Muscular Espinal/genética , Neurocalcina , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Oligonucleotídeos/farmacologia , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor
12.
Mol Psychiatry ; 27(5): 2492-2501, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296810

RESUMO

The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Corticosteroides , Animais , Hormônio Liberador da Corticotropina , Ratos , Peixe-Zebra
13.
Gene Ther ; 29(12): 698-709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35075265

RESUMO

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Animais , Camundongos , Distrofia Miotônica/terapia , Distrofia Miotônica/tratamento farmacológico , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Expansão das Repetições de Trinucleotídeos , Proteínas de Ligação a RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo
14.
Cell Rep ; 37(11): 110108, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910914

RESUMO

Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, that lowering SARM1 levels by 50% delays programmed axon degeneration in vivo after sciatic nerve transection and partially prevents neurite outgrowth defects in mice lacking the pro-survival factor NMNAT2. In vitro, the rate of degeneration in response to traumatic, neurotoxic, and genetic triggers of SARM1 activation is also slowed. Finally, we demonstrate that Sarm1 antisense oligonucleotides decrease SARM1 levels by more than 50% in vitro, which delays or prevents programmed axon degeneration. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injury. These data demonstrate that axon protection occurs in a Sarm1 gene dose-responsive manner and that SARM1-lowering agents have therapeutic potential, making Sarm1-targeting antisense oligonucleotides a promising therapeutic strategy.


Assuntos
Proteínas do Domínio Armadillo/fisiologia , Axônios/fisiologia , Proteínas do Citoesqueleto/fisiologia , Haploinsuficiência , Degeneração Neural/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Nervo Isquiático/citologia , Degeneração Walleriana/tratamento farmacológico , Animais , Axônios/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
15.
Hum Mol Genet ; 31(1): 82-96, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34368854

RESUMO

Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.


Assuntos
Atrofia Muscular Espinal , Processamento Alternativo , Animais , Modelos Animais de Doenças , Progressão da Doença , Éxons , Feminino , Humanos , Masculino , Camundongos , Atrofia Muscular Espinal/metabolismo , Splicing de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor
16.
Front Neurol ; 12: 624051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262517

RESUMO

Acetylation of tau protein is dysregulated in Alzheimer's Disease (AD). It has been proposed that acetylation of specific sites in the KXGS motif of tau can regulate phosphorylation of nearby residues and reduce the propensity of tau to aggregate. Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme involved in deacetylation of multiple targets, including tau, and it has been suggested that inhibition of HDAC6 would increase tau acetylation at the KXGS motifs and thus may present a viable therapeutic approach to treat AD. To directly test the contribution of HDAC6 to tau pathology, we intracerebroventricularly injected an antisense oligonucleotide (ASO) directed against HDAC6 mRNA into brains of P301S tau mice (PS19 model), which resulted in a 70% knockdown of HDAC6 protein in the brain. Despite a robust decrease in levels of HDAC6, no increase in tau acetylation was observed. Additionally, no change of tau phosphorylation or tau aggregation was detected upon the knockdown of HDAC6. We conclude that HDAC6 does not impact tau pathology in PS19 mice.

17.
Nat Neurosci ; 24(8): 1089-1099, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083786

RESUMO

Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease.


Assuntos
Giro Denteado , Células Ependimogliais , Neurogênese/fisiologia , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Animais , Reprogramação Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Oligonucleotídeos Antissenso
18.
Cell Rep ; 35(4): 109037, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910013

RESUMO

The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.


Assuntos
Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos
19.
Front Cell Dev Biol ; 9: 809942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096836

RESUMO

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (C9orf72), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice. These findings suggest that pharmacologically reducing HDAC6 levels could be of therapeutic value in c9FTD/ALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...