Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885766

RESUMO

The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC50, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.


Assuntos
Genômica , Microplásticos , Saccharomyces cerevisiae , Triclosan , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Triclosan/toxicidade , Microplásticos/toxicidade , Poliestirenos/toxicidade , Nanopartículas/toxicidade
2.
Environ Int ; 186: 108596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522228

RESUMO

Organophosphate flame retardants (OPFRs) have been widely detected in multiple environment media and have many adverse effects with complex toxicity mechanisms. However, the early molecular responses to OPFRs have not been fully elucidated, thereby making it difficult to assess their risks accurately. In this work, we systematically explored the point of departure (POD) of biological pathways at genome-wide level perturbed by 14 OPFRs with three substituents (alkyl, halogen, and aryl) using a dose-dependent functional genomics approach in Saccharomyces cerevisiae at 24 h exposure. Firstly, our results demonstrated that the overall biological potency at gene level (PODDRG20) ranged from 0.013 to 35.079 µM for 14 OPFRs, especially the tributyl phosphate (TnBP) exhibited the strongest biological potency with the least PODDRG20. Secondly, we found that structural characteristics of carbon number and logKow were significantly negatively correlated with POD, and carbon number and logKow also significantly affected lipid metabolism associated processes. Thirdly, these early biological pathways of OPFRs toxification were found to be involved in lipid metabolism, oxidative stress, DNA damage, MAPK signaling pathway, and amino acid and carbohydrate metabolism, among which the lipid metabolism was the most sensitive molecular response perturbed by most OPFRs. More importantly, we identified one resistant mutant strain with knockout of ERG2 (YMR202W) gene participated in steroid biosynthesis pathway, which can serve as a key yeast strain of OPFRs toxification. Overall, our study demonstrated an effective platform for accurately assessing OPFRs risks and provided a basis for further green OPFRs development.


Assuntos
Retardadores de Chama , Genômica , Organofosfatos , Saccharomyces cerevisiae , Retardadores de Chama/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Organofosfatos/toxicidade , Relação Dose-Resposta a Droga
3.
Front Plant Sci ; 10: 957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552059

RESUMO

Global mean temperature is expected to significantly increase by the end of the twenty-first century and could have dramatic impacts on a plant's growth, physiology, and ecosystem processes. Temperature manipulative experiments have been conducted to understand the responsive pattern of plant ecophysiology to climate warming. However, it remains unknown how different methodology used in these experiments will affect plants ecophysiological responses to warming. We conducted a comprehensive meta-analysis of the warming manipulative studies to synthesize the ecophysiological traits responses to warming treatment of different intensities, durations, and conducted for different species and under different experimental settings. The results indicated that warming enhanced leaf dark respiration (Rd) and specific leaf area (SLA) but decreased net photosynthetic rate (Anet) and leaf nitrogen content (LN). The positive and negative effects of warming on Rd and Anet were greater for C4 species than C3 species, respectively. The negative effect of warming treatment on Anet and LN and the positive effect on Rd were more evident under >1 year warming treatment. Negative effects of warming were more evident for plants grown at <10 L pots when experiment duration was longer than 1 year. The magnitude of warming treatment had a significant impact on most of the parameters that were investigated in the study. Overall, the results showed that warming effects on plant ecophysiological traits varied among different response variables and PFTs and affected by the magnitude of temperature change and experimental methodology. The results highlight the need for cautiously selecting the values of plant ecophysiological parameters in forecasting ecosystem function changes in future climate regimes and designing controlled experiments to realistically reflecting ecosystems responses to future global warming.

4.
Front Plant Sci ; 9: 1290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254652

RESUMO

Understanding how nitrogen (N) and/or phosphorus (P) addition affects plants carbon- and water- related ecophysiological characteristics is essential for predicting the global change impact on the alpine meadow ecosystem structure and function in carbon and water cycling. The Qinghai-Tibetan Plateau (QTP) with the largest alpine meadow in the world is regarded as the third pole in the earth and has been experiencing increased atmospheric N deposition. In this project, we focused on two key species (Elymus dahuricus and Gentiana straminea) of the alpine meadow on the Tibetan Plateau and investigated the variability of photosynthetic and stomatal responses to 8-year N and/or P treatments through field measurements and modeling. We measured photosynthesis- and gs-response curves to generate parameter estimates from individual leaves with two widely used stomatal models (the BWB model and MED model) for validation of growth and ecosystem models and to elucidate the physiological basis for observed differences in productivity and WUE. We assessed WUE by means of gas exchange measurements (WUEi) and stable carbon isotope composition (Δ13C) to get the intrinsic and integrated estimates of WUE of the two species. P and N+P treatments, but not N, improved the photosynthetic capacity (Anet and Vcmax) for both species. Stomatal functions including instaneous measurements of stomatal conductance, intrinsic water-use efficiency and stomatal slope parameters of the two widely used stomatal models were altered by the addition of P or N+P treatment, but the impact varied across years and species. The inconsistent responses across species suggest that an understanding of photosynthetic, stomatal functions and water-use should be evaluated on species separately. WUE estimated by Δ13C values had a positive relationship with Anet and gs and a negative relationship with WUEi. Our findings should be useful for understanding the underlying mechanisms of the response of alpine plants growth and alpine meadow ecosystem to global change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA