Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 22(1)2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-28029133

RESUMO

Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl2 at 20 µM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 µM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H2S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H2S scavenger hypotaurine (HT) or potent H2S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H2S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H2S level with NaHS (H2S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H2S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H2S in physiological modulations.


Assuntos
Cloreto de Cádmio/antagonistas & inibidores , Cistationina gama-Liase/antagonistas & inibidores , Sulfeto de Hidrogênio/antagonistas & inibidores , Nicotiana/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Alcinos/farmacologia , Antioxidantes/farmacologia , Cloreto de Cádmio/farmacologia , Morte Celular/efeitos dos fármacos , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Expressão Gênica , Glicina/análogos & derivados , Glicina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sulfetos/farmacologia , Taurina/análogos & derivados , Taurina/farmacologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
2.
Molecules ; 21(10)2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27754435

RESUMO

Thymol is a famous plant-derived compound that has been widely used in pharmacy due to its antioxidant and antimicrobial properties. However, the modulation of intrinsic plant physiology by thymol remains unclear. It is a significant challenge to confer plant tolerance to Cd (cadmium) stress. In the present study physiological, histochemical, and biochemical methods were applied to investigate thymol-induced Cd tolerance in tobacco (Nicotiana tabacum) seedlings. Thymol was able to alleviate Cd-induced growth inhibition of tobacco seedlings in both dose- and time-dependent manners. Both histochemical detection and in-tube assays suggested that thymol treatment blocked Cd-induced over-generation of reactive oxygen species (ROS), lipid peroxidation, and loss of membrane integrity in both leaves and roots. Thymol decreased Cd-induced cell death that was indicated in vivo by propidium iodide (PI) and trypan blue, respectively. Thymol stimulated glutathione (GSH) biosynthesis by upregulating the expression of γ-glutamylcysteine synthetase 1 (GSH1) in Cd-treated seedlings, which may contribute to the alleviation of Cd-induced oxidative injury. In situ fluorescent detection of intracellular Cd2+ revealed that thymol significantly decreased free Cd2+ in roots, which could be explained by the thymol-stimulated GSH biosynthesis and upregulation of the expression of phyochelatin synthase 1 (PCS1). Taken together, these results suggested that thymol has great potential to trigger plant resistant responses to combat heavy metal toxicity, which may help our understanding of the mechanism for thymol-modulated cell metabolic pathways in response to environmental stimuli.


Assuntos
Cádmio/toxicidade , Glutationa/metabolismo , Nicotiana/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Timol/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Cisteína Ligase/metabolismo , Homeostase , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plântula/metabolismo , Fatores de Tempo , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...