Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454807

RESUMO

Vein severing in plants caused by leaf damage is common in fields where crops are cultivated. It is hypothesized that leaves with complex reticulate venation can withstand hydraulic disturbances caused by vein severing, thereby preserving leaf carbon assimilation. However, limited research focuses on vein damage of leaves with parallel venation. We studied how vein-severing affected the photosynthetic traits of rice (Oryza sativa) leaves in seconds, minutes and days, under varying water-demand conditions and differing extents of water supply disruption. Rice leaves completely lost their photosynthetic capacity within 2.5 minutes after excision. Severing the midrib resulted in reduced light-saturated photosynthetic rate (A), stomatal conductance (gsw ) and transpiration rate (E) by 2.6, 6.8 and 5.9%, respectively, already after thirty minutes. We further investigated the photosynthetic trait responses to various extents of leaf width severing, while keeping the midrib functional. Surprisingly, A, gsw and E in the downstream area of the severed leaves largely remained stable, showing minimal variation across different leaf width severing ratios. These traits declined only slightly even under increased ambient light intensity and leaf-to-air vapor pressure deficit. This sustained photosynthesis post-severing is attributed to the efficient lateral water transport. Long-term leaf damage slightly but not significantly, impacted the downstream photosynthetic traits within five days post-severing. However, a more pronounced reduction in gas exchange during leaf senescence was observed nine days after severing. These findings suggested that rice leaves can tolerate hydraulic disturbances from vein severing and maintain functionality under various conditions, which is crucial for crop yield stability. However, long-term consequences require further investigation.


Assuntos
Oryza , Oryza/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Plantas , Fotossíntese
2.
Environ Sci Pollut Res Int ; 29(5): 7382-7392, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34476690

RESUMO

Identifying an energy-efficient system with low energy use, low global warming potential (GWP), and high profitability is essential for ensuring the sustainability of the agro-environment. Given the global importance of China's rice production, this study determines energy, environmental, and economic performances of transplanted (TPR) and direct-seeded rice system (DSR) in central China. The results showed that total energy inputs for TPR and DSR were 31.5 and 22.8 GJ ha-1 across two growing seasons, respectively. Higher energy input for TPR primarily resulted from extra energy use of the nursery beds and transplanting. Higher energy output of DSR (202.5 GJ ha-1) over that of TPR (187.7 GJ ha-1) was due to a slightly higher yield from DSR. Therefore, DSR exhibited significantly higher energy use efficiency than that of TPR. Lower specific energy for DSR (2.78 MJ kg-1) relative to TPR (4.02 MJ kg-1) indicated that the energy used to produce per unit of rice grain could be reduced by 30.8% by adopting DSR. On average, GWP of DSR was reduced by 5.6% compared with TPR. Moreover, DSR had a 55.8% higher gross return and a 25.7% lower production cost than those of TPR. Overall, compared with TPR, DSR has the potential to increase gross economic return and energy output with reduced energy input and emissions. Therefore, this study suggests that DSR is an environmentally-sound and economically-viable production system. As such, DSR is noted as an energy-efficient and climate-smart production system that could be used by policymakers and farmers to achieve not only improvements in the environment but also financial benefits.


Assuntos
Oryza , Agricultura , China , Grão Comestível , Aquecimento Global , Estações do Ano
3.
Plants (Basel) ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616195

RESUMO

Stomata control carbon and water exchange between the leaves and the ambient. However, the plasticity responses of stomatal traits to growth conditions are still unclear, especially for monocot leaves. The current study investigated the leaf anatomical traits, stomatal morphological traits on both adaxial and abaxial leaf surfaces, and photosynthetic traits of Oryza leaves developed in two different growth conditions. Substantial variation exists across the Oryza species in leaf anatomy, stomatal traits, photosynthetic rate, and stomatal conductance. The abaxial stomatal density was higher than the adaxial stomatal density in all the species, and the stomatal ratios ranged from 0.35 to 0.46 across species in two growth environments. However, no difference in the stomatal ratio was observed between plants in the growth chamber and outdoors for a given species. Photosynthetic capacity, stomatal conductance, leaf width, major vein thickness, minor vein thickness, inter-vein distance, and stomatal pore width values for leaves grown outdoors were higher than those for plants grown in the growth chamber. Our results indicate that a broad set of leaf anatomical, stomatal, and photosynthetic traits of Oryza tend to shift together during plasticity to diverse growing conditions, but the previously projected sensitive trait, stomatal ratio, does not shape growth conditions.

4.
J Sci Food Agric ; 100(2): 595-606, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31591721

RESUMO

BACKGROUND: Climate change has posed great challenges to rice production. Temperature and solar radiation show significant variations in central China. This study aims to analyze the responses of different rice genotypes to the variations of temperature and solar radiation in central China, and to find the way of identifying the optimal sowing date to improve and stabilize rice production. For this end, four rice genotypes (two Indica and two Japonica cultivars) were cultivated at two locations under irrigation conditions in 2 years with six sowing dates. RESULTS: We investigated variations of rice grain yield, resource use efficiency, average daily temperature and solar radiation during different phenological stages. Rice grain yield could increase by about 2-17% in central China. Compared with solar radiation, temperature was a more important factor affecting rice grain yield in central China. The grain yield showed great correlation with the means temperature during different phenological stages, especially during the first 20 days after heading (GT20). Besides our results demonstrated that the grain yield displayed slender variations when the GT20 was within 24.9-26.4 °C. However, GT20 was higher than 26.4 °C in most cases, which became more frequent due to climate changes. Analysis of climate change during the last 25 years revealed that the frequency of GT20 within 24.9-26.4 °C was increased by the delay of sowing date. CONCLUSION: We propose that delaying sowing date to achieve the optimal GT20 (24.9 °C-26.4 °C) can be an effective strategy to stabilize and improve rice grain yield and resource use efficiency in central China. © 2019 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Oryza/crescimento & desenvolvimento , Irrigação Agrícola , China , Mudança Climática , Genótipo , Oryza/genética , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura , Água/análise , Água/metabolismo
5.
Sci Rep ; 7: 38982, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079051

RESUMO

Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.


Assuntos
Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , China , Humanos
6.
Sci Rep ; 5: 13389, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26303807

RESUMO

Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple environments. There were similar relationships between SPAD readings and chlorophyll content per leaf area for the species groups, but the relationship between chlorophyll content and leaf N content per leaf area, and the relationship between SPAD readings and leaf N content per leaf area varied widely among the species groups. A significant impact of light-dependent chloroplast movement on SPAD readings was observed under low leaf N supplementation in both rice and soybean but not under high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was strongly influenced by short-term changes in growth light. We demonstrate that the relationship between SPAD readings and leaf N content per leaf area is profoundly affected by environmental factors and leaf features of crop species, which should be accounted for when using a chlorophyll meter to guide N management in agricultural systems.


Assuntos
Clorofila/análise , Produtos Agrícolas/química , Monitoramento Ambiental/métodos , Nitrogênio/análise , Folhas de Planta/química , Tecnologia de Sensoriamento Remoto/métodos , Meio Ambiente , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espectral/métodos
7.
Funct Plant Biol ; 42(4): 347-356, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480679

RESUMO

To determine whether variations in high-temperature (HT) tolerance in three rice (Oryza sativa L.) cultivars and two N treatments are related to leaf transpiration rate (E), and whether the involvement of nonstructural carbohydrates (NSC) in HT tolerance is related to E, a pot experiment supplied with two N levels (low N, 0.077g urea kg-1 soil; sufficient N, 0.538g urea kg-1 soil) was conducted under ambient temperature (AT) and HT with three cultivars, N22, Zhenshan 97B and Koshihikari. HT significantly decreased grain yield and seed setting percentage in Koshihikari and ZS97, which could be partly offset by a sufficient N supply. The most HT-tolerant cultivar, N22, had the highest E and stem NSC concentrations under both N treatments, whereas the most sensitive cultivar, Koshihikari, had the lowest E and stem NSC concentrations. A sufficient N supply significantly increased E in the three cultivars under the HT treatment. Grain yield and seed-setting percentage were positively related to E and plant NSC concentration under HT, and E was positively related to NSC concentration under both AT and HT. Therefore, variations in HT tolerance among rice cultivars and nitrogen treatments were related to E, and possibly to NSC concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...