Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35728756

RESUMO

Heat tolerance is a key trait for understanding insect responses to extreme heat events, but tolerance may be modulated by changes in food availability and seasonal variability in temperature. Differences in sensitivity and resistance across life stages are also important determinants of species responses. Using a full-factorial experimental design, we here investigated the effects of larval starvation, adult starvation, and seasonal morph (developmental temperature) on heat tolerance of a seasonally polyphenic butterfly, Mycalesis mineus, in both larval and adult stages. While starvation and rearing temperature profoundly influenced various life history traits in the insect, none of the treatments affected adult heat tolerance. There was also no evidence of reduced heat tolerance in larvae under starvation stress, though larval thermal tolerance was higher by ~1 °C at the higher developmental temperature. The lack of a starvation effect was unexpected given the general physiological cost of heat tolerance mechanisms. This might be attributed to the ability to tolerate heat being preserved under resource-based trade-offs due to its critical role in ensuring insect survival. Invariant heat tolerance in M. mineus shows that some insects may have thermal capacity to cope with extreme heat under short-term starvation and seasonality disruptions, though more prolonged changes may have greater consequences. The capacity to maintain key physiological function under multiple stressors will be crucial for species resilience in future novel environments.


Assuntos
Borboletas , Inanição , Termotolerância , Animais , Temperatura Alta , Larva/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...