Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(9): 4644-4659, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791287

RESUMO

The Monte Carlo (MC) method is one of the most widely used numerical tools to model the light interaction with tissue. However, due to the low photon collection efficiency and the need to simulate the entire emission spectrum, it is computationally expensive to simulate the full-spectrum backscattered diffuse reflectance (F-BDR). Here, we propose an acceleration scheme based on importance sampling (IS). We derive the biasing sampling function tailored for simulating BDR based on the two-term scattering phase function (TT). The parameters of the TT function at different wavelengths are directly obtained by fitting the Mie scattering phase function. Subsequently, we incorporate the TT function and its corresponding biased function into the redefined IS process and realize the accelerated simulation of F-BDR. Phantom simulations based on the Fourier-domain optical coherence tomography (FD-OCT) are conducted to demonstrate the efficiency of the proposed method. Compared to the original simulator without IS, our proposed method achieves a 373× acceleration in simulating the F-BDR of the multi-layer phantom with a relative mean square error (rMSE) of less than 2%. Besides, by parallelly computing A-lines, our method enables the simulation of an entire B-scan in less than 0.4 hours. To our best knowledge, it is the first time that a volumetric OCT image of a complex phantom is simulated. We believe that the proposed acceleration method can be readily applied to fast simulations of various F-BDR-dependent applications. The source codes of this manuscript are also publicly available online.

2.
Biomed Opt Express ; 14(10): 5148-5161, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37854579

RESUMO

Optical coherence tomography (OCT) has stimulated a wide range of medical image-based diagnosis and treatment in fields such as cardiology and ophthalmology. Such applications can be further facilitated by deep learning-based super-resolution technology, which improves the capability of resolving morphological structures. However, existing deep learning-based method only focuses on spatial distribution and disregards frequency fidelity in image reconstruction, leading to a frequency bias. To overcome this limitation, we propose a frequency-aware super-resolution framework that integrates three critical frequency-based modules (i.e., frequency transformation, frequency skip connection, and frequency alignment) and frequency-based loss function into a conditional generative adversarial network (cGAN). We conducted a large-scale quantitative study from an existing coronary OCT dataset to demonstrate the superiority of our proposed framework over existing deep learning frameworks. In addition, we confirmed the generalizability of our framework by applying it to fish corneal images and rat retinal images, demonstrating its capability to super-resolve morphological details in eye imaging.

3.
ArXiv ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37502625

RESUMO

Optical coherence tomography (OCT) has stimulated a wide range of medical image-based diagnosis and treatment in fields such as cardiology and ophthalmology. Such applications can be further facilitated by deep learning-based super-resolution technology, which improves the capability of resolving morphological structures. However, existing deep learning-based method only focuses on spatial distribution and disregard frequency fidelity in image reconstruction, leading to a frequency bias. To overcome this limitation, we propose a frequency-aware super-resolution framework that integrates three critical frequency-based modules (i.e., frequency transformation, frequency skip connection, and frequency alignment) and frequency-based loss function into a conditional generative adversarial network (cGAN). We conducted a large-scale quantitative study from an existing coronary OCT dataset to demonstrate the superiority of our proposed framework over existing deep learning frameworks. In addition, we confirmed the generalizability of our framework by applying it to fish corneal images and rat retinal images, demonstrating its capability to super-resolve morphological details in eye imaging.

4.
Opt Lett ; 48(7): 1910-1913, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221797

RESUMO

With the rapid advances of light source technology, the A-line imaging rate of swept-source optical coherence tomography (SS-OCT) has experienced a great increase in the past three decades. The bandwidths of data acquisition, data transfer, and data storage, which can easily reach several hundred megabytes per second, have now been considered major bottlenecks for modern SS-OCT system design. To address these issues, various compression schemes have been previously proposed. However, most of the current methods focus on enhancing the capability of the reconstruction algorithm and can only provide a data compression ratio (DCR) up to 4 without impairing the image quality. In this Letter, we proposed a novel design paradigm, in which the sub-sampling pattern for interferogram acquisition is jointly optimized with the reconstruction algorithm in an end-to-end manner. To validate the idea, we retrospectively apply the proposed method on an ex vivo human coronary optical coherence tomography (OCT) dataset. The proposed method could reach a maximum DCR of ∼62.5 with peak signal-to-noise ratio (PSNR) of 24.2 dB, while a DCR of ∼27.78 could yield a visually pleasant image with a PSNR of ∼24.6 dB. We believe the proposed system could be a viable remedy for the ever-growing data issue in SS-OCT.

5.
Opt Express ; 31(2): 1813-1831, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785208

RESUMO

The image reconstruction for Fourier-domain optical coherence tomography (FD-OCT) could be achieved by iterative methods, which offer a more accurate estimation than the traditional inverse discrete Fourier transform (IDFT) reconstruction. However, the existing iterative methods are mostly A-line-based and are developed on CPU, which causes slow reconstruction. Besides, A-line-based reconstruction makes the iterative methods incompatible with most existing image-level image processing techniques. In this paper, we proposed an iterative method that enables B-scan-based OCT image reconstruction, which has three major advantages: (1) Large-scale parallelism of the OCT dataset is achieved by using GPU acceleration. (2) A novel image-level cross-domain regularizer was developed, such that the image processing could be performed simultaneously during the image reconstruction; an enhanced image could be directly generated from the OCT interferogram. (3) The scalability of the proposed method was demonstrated for 3D OCT image reconstruction. Compared with the state-of-the-art (SOTA) iterative approaches, the proposed method achieves higher image quality with reduced computational time by orders of magnitude. To further show the image enhancement ability, a comparison was conducted between the proposed method and the conventional workflow, in which an IDFT reconstructed OCT image is later processed by a total variation-regularized denoising algorithm. The proposed method can achieve a better performance evaluated by metrics such as signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), while the speed is improved by more than 30 times. Real-time image reconstruction at more than 20 B-scans per second was realized with a frame size of 4096 (axial) × 1000 (lateral), which showcases the great potential of the proposed method in real-world applications.

6.
Opt Lett ; 48(3): 759-762, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723582

RESUMO

Learning-based computer-generated holography (CGH) algorithms appear as novel alternatives to generate phase-only holograms. However, most existing learning-based approaches underperform their iterative peers regarding display quality. Here, we recognize that current convolutional neural networks have difficulty learning cross-domain tasks due to the limited receptive field. In order to overcome this limitation, we propose a Fourier-inspired neural module, which can be easily integrated into various CGH frameworks and significantly enhance the quality of reconstructed images. By explicitly leveraging Fourier transforms within the neural network architecture, the mesoscopic information within the phase-only hologram can be more handily extracted. Both simulation and experiment were performed to showcase its capability. By incorporating it into U-Net and HoloNet, the peak signal-to-noise ratio of reconstructed images is measured at 29.16 dB and 33.50 dB during the simulation, which is 4.97 dB and 1.52 dB higher than those by the baseline U-Net and HoloNet, respectively. Similar trends are observed in the experimental results. We also experimentally demonstrated that U-Net and HoloNet with the proposed module can generate a monochromatic 1080p hologram in 0.015 s and 0.020 s, respectively.

7.
IEEE Trans Biomed Eng ; 69(12): 3667-3677, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35594212

RESUMO

Coronary artery disease (CAD) is a cardiovascular condition with high morbidity and mortality. Intravascular optical coherence tomography (IVOCT) has been considered as an optimal imagining system for the diagnosis and treatment of CAD. Constrained by Nyquist theorem, dense sampling in IVOCT attains high resolving power to delineate cellular structures/features. There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging. In this paper, we propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain while maintaining high quality in image reconstruction. The down-scaling schedule boosts data acquisition speed without any hardware modifications. Additionally, we propose a unified multi-scale reconstruction framework, namely Multiscale-Spectral-Spatial-Magnification Network (MSSMN), to resolve highly down-scaled (compressed) OCT images with flexible magnification factors. We incorporate the proposed methods into Spectral Domain OCT (SD-OCT) imaging of human coronary samples with clinical features such as stent and calcified lesions. Our experimental results demonstrate that spectral-spatial down-scaled data can be better reconstructed than data that are down-scaled solely in either spectral or spatial domain. Moreover, we observe better reconstruction performance using MSSMN than using existing reconstruction methods. Our acquisition method and multi-scale reconstruction framework, in combination, may allow faster SD-OCT inspection with high resolution during coronary intervention.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Humanos , Tomografia de Coerência Óptica/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Stents
8.
Biomed Opt Express ; 13(12): 6317-6334, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589559

RESUMO

Monte Carlo (MC) simulation has been widely used to study imaging procedures, including Fourier-domain optical coherence tomography (FD-OCT). Despite the broadband nature of FD-OCT, the results obtained at a single wavelength are often used in previous studies. Some wavelength-relied imaging applications, such as spectroscopic OCT (S-OCT), are unlikely to be simulated in this way due to the lack of information from the entire spectrum. Here, we propose a novel simulator for full-wavelength MC simulation of FD-OCT. All wavelengths within the emission spectrum of the light source will be simulated, and the optical properties derived from Mie theory will be applied. We further combine the inverse discrete Fourier transform (IDFT) with a probability distribution-based signal pre-processing to combat the excessive noises in the OCT signal reconstruction, which is caused by the non-uniform distribution of the scattering events at different wavelengths. Proof-of-concept simulations are conducted to show the excellent performance of the proposed simulator on signal reconstruction and optical properties extraction. Compared with the conventional method, the proposed simulator is more accurate and could better preserve the wavelength-dependent features. For example, the mean square error (MSE) computed between the backscattering coefficient extracted by the proposed simulator and the ground truth is 0.11, which is far less than the value (7.67) of the conventional method. We believe this simulator could be an effective tool to study the wavelength dependency in FD-OCT imaging as well as a preferred solution for simulating spectroscopic OCT.

9.
Biomed Opt Express ; 12(4): 2204-2220, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996224

RESUMO

An accurate and automated tissue segmentation algorithm for retinal optical coherence tomography (OCT) images is crucial for the diagnosis of glaucoma. However, due to the presence of the optic disc, the anatomical structure of the peripapillary region of the retina is complicated and is challenging for segmentation. To address this issue, we develop a novel graph convolutional network (GCN)-assisted two-stage framework to simultaneously label the nine retinal layers and the optic disc. Specifically, a multi-scale global reasoning module is inserted between the encoder and decoder of a U-shape neural network to exploit anatomical prior knowledge and perform spatial reasoning. We conduct experiments on human peripapillary retinal OCT images. We also provide public access to the collected dataset, which might contribute to the research in the field of biomedical image processing. The Dice score of the proposed segmentation network is 0.820 ± 0.001 and the pixel accuracy is 0.830 ± 0.002, both of which outperform those from other state-of-the-art techniques.

10.
IEEE Photonics J ; 13(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927799

RESUMO

Saturation artifacts in optical coherence tomography (OCT) occur when received signal exceeds the dynamic range of spectrometer. Saturation artifact shows a streaking pattern and could impact the quality of OCT images, leading to inaccurate medical diagnosis. In this paper, we automatically localize saturation artifacts and propose an artifact correction method via inpainting. We adopt a dictionary-based sparse representation scheme for inpainting. Experimental results demonstrate that, in both case of synthetic artifacts and real artifacts, our method outperforms interpolation method and Euler's elastica method in both qualitative and quantitative results. The generic dictionary offers similar image quality when applied to tissue samples which are excluded from dictionary training. This method may have the potential to be widely used in a variety of OCT images for the localization and inpainting of the saturation artifacts.

11.
Opt Lett ; 45(23): 6394-6397, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258820

RESUMO

We report on the investigation of spectral leakage's impact on the reconstruction of Fourier-domain optical coherence tomography (FD-OCT). We discuss the shift-variant nature introduced by the spectral leakage and develop a novel spatial-domain FD-OCT image formation model. A proof-of-concept phantom experiment is conducted to validate our model. Compared with previous models, the proposed framework could better describe the image formation process, especially when the fineness of the axial structure approaches the theoretical resolution limit.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1879-1882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018367

RESUMO

Optical coherence tomography (OCT) has stimulated a wide range of medical image-based diagnosis and treatment. In cardiac imaging, OCT has been used in assessing plaques before and after stenting. While needed in many scenarios, high resolution comes at the costs of demanding optical design and data storage/transmission. In OCT, there are two types of resolutions to characterize image quality: optical and digital resolutions. Although multiple existing works have heavily emphasized on improving the digital resolution, the studies on improving optical resolution or both resolutions remain scarce. In this paper, we focus on improving both resolutions. In particular, we investigate a deep learning method to address the problem of generating a high-resolution (HR) OCT image from a low optical and low digital resolution (L2R) image. To this end, we have modified the existing super-resolution generative adversarial network (SR-GAN) for OCT image reconstruction. Experimental results from the human coronary OCT images have demonstrated that the reconstructed images from highly compressed data could achieve high structural similarity and accuracy in comparison with the HR images. Besides, our method has obtained better denoising performance than the block-matching and 3D filtering (BM3D) and Denoising Convolutional Neural Networks (DnCNN) denoising method.


Assuntos
Aprendizado Profundo , Tomografia de Coerência Óptica , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
13.
Opt Express ; 27(9): 12794-12805, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052815

RESUMO

We propose and experimentally demonstrate a multiple input multiple output - artificial neural network (MIMO-ANN) nonlinear equalizer (NLE) to process the complex quadrature amplitude modulation (QAM) signal in a single-sideband (SSB) self-coherent detection (SCD) system. In the proposed scheme, a 2-by-2 MIMO structure with two ANNs is employed to effectively mitigate the signal distortions induced by in-phase and quadrature (IQ) imbalance and fiber nonlinear effects. By using the proposed MIMO-ANN NLE, we successfully transmit a 112-Gb/s SSB 16-QAM signal over a single-span 120-km single mode fiber (SMF) in a direct detection (DD) system with a bit error rate (BER) lower than 3.8 × 10-3. We also conduct a comparative study between the proposed MIMO-ANN NLE, a feedforward equalizer (FFE), a NLE consisting of two independent real-valued Volterra filters, and a MIMO-Volterra filter. The proposed MIMO-ANN NLE outperforms other equalizers with the longer fiber length and thus stronger nonlinearities, since it can easily approximate a complicated nonlinear function. To the best of our knowledge, this is the first experimental demonstration of an ANN-based equalizer in an SSB SCD system.

14.
Opt Express ; 27(2): 855-871, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696165

RESUMO

Here we present a novel phase-sensitive swept-source optical coherence tomography (PhS-SS-OCT) system. The simultaneously recorded calibration signal, which is commonly used in SS-OCT to stabilize the phase, is randomly sub-sampled during the acquisition, and it is later reconstructed based on the Compressed Sensing (CS) theory. We first mathematically investigated the method, and verified it through computer simulations. We then conducted a vibrational frequency test and a flow velocity measurement in phantoms to demonstrate the system's capability of handling phase-sensitive tasks. The proposed scheme shows excellent phase stability with greatly discounted data bandwidth compared with conventional procedures. We further showcased the usefulness of the system in biological samples by detecting the blood flow in ex vivo swine left marginal artery. The proposed system is compatible with most of the existing SS-OCT systems and could be a preferred solution for future high-speed phase-sensitive applications.

15.
J Biophotonics ; 11(4): e201700204, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29165902

RESUMO

A single-channel high-resolution cross-polarization (CP) optical coherence tomography (OCT) system is presented for multicontrast imaging of human myocardium in one-shot measurement. The intensity and functional contrasts, including the ratio between the cross- and co-polarization channels as well as the cumulative retardation, are reconstructed from the CP-OCT readout. By comparing the CP-OCT results with histological analysis, it is shown that the system can successfully delineate microstructures in the myocardium and differentiate the fibrotic myocardium from normal or ablated myocardium based on the functional contrasts provided by the CP-OCT system. The feasibility of using A-line profiles from the 2 orthogonal polarization channels to identify fibrotic myocardium, normal myocardium and ablated lesion is also discussed.


Assuntos
Coração/diagnóstico por imagem , Razão Sinal-Ruído , Tomografia de Coerência Óptica/métodos , Feminino , Fibrose , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Necrose
16.
Biomed Opt Express ; 8(8): 3687-3699, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082103

RESUMO

The rapid advance in swept-source optical coherence tomography (SS-OCT) technology has enabled exciting new applications in elastography, angiography, and vibrometry, where both high temporal resolution and phase stability are highly sought-after. In this paper, we present a 200 kHz SS-OCT system centered at 1321 nm by using an electro-optically tuned swept source. The proposed system's performance was fully characterized, and it possesses superior phase stability (0.0012% scanning variability and <1 ns timing jitter) that is promising for many phase-sensitive imaging applications. Biological experiments were demonstrated within ex vivo human tracheobronchial ciliated epithelium where both the ciliary motion and ciliary beat frequency were successfully extracted.

17.
Opt Express ; 25(21): 25819-25830, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041245

RESUMO

Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA (FC-RPCA), for selectively segmenting dynamic phenomena that exhibit spectra within a user-defined range of frequencies. The algorithm lacks subjective parameter tuning and demonstrates robust segmentation in datasets containing multiple motion sources and high amplitude noise. When tested on 17 ex-vivo, time lapse optical coherence tomography (OCT) B-scans of human ciliated epithelium, segmentation accuracies ranged between 91-99% and consistently out-performed traditional RPCA.


Assuntos
Algoritmos , Movimento , Análise de Componente Principal , Tomografia de Coerência Óptica/estatística & dados numéricos , Traqueia/diagnóstico por imagem , Cílios/fisiologia , Epitélio/diagnóstico por imagem , Humanos , Fatores de Tempo , Tomografia de Coerência Óptica/métodos , Traqueia/citologia
18.
Opt Lett ; 42(7): 1333-1336, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362762

RESUMO

We propose a new model to characterize the phase noise in swept-source optical coherence tomography (SS-OCT). The new model explicitly incorporates scanning variability, timing jitter, and sample location in addition to intensity noise (shot noise). The model was analyzed and validated by using both Monte Carlo methods and experiments. We suggest that the proposed model can be used as a guideline for future SS-OCT experimental designs.

19.
Lasers Surg Med ; 49(3): 270-279, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28231402

RESUMO

BACKGROUND AND OBJECTIVE: Cilia-driven mucociliary clearance is an important self-defense mechanism of great clinical importance in pulmonary research. Conventional light microscopy possesses the capability to visualize individual cilia and its beating pattern but lacks the throughput to assess the global ciliary activities and flow dynamics. Optical coherence tomography (OCT), which provides depth-resolved cross-sectional images, was recently introduced to this area. MATERIALS AND METHODS: Fourteen de-identified human tracheobronchial tissues are directly imaged by two OCT systems: one system centered at 1,300 nm with 6.5 µm axial resolution and 15 µm lateral resolution, and the other centered at 800 nm with 2.72 µm axial resolution and 5.52 µm lateral resolution. Speckle variance images are obtained in both cross-sectional and volumetric modes. After imaging, sample blocks are sliced along the registered OCT imaging plane and processed with hematoxylin and eosin (H&E) stain for comparison. Quantitative flow analysis is performed by tracking the path-lines of microspheres in a fixed cross-section. Both the flow rate and flow direction are characterized. RESULTS: The speckle variance images successfully segment the ciliated epithelial tissue from its cilia-denuded counterpart, and the results are validated by corresponding H&E stained sections. A further temporal frequency analysis is performed to extract the ciliary beat frequency (CBF) at cilia cites. By adding polyester microspheres as contrast agents, we demonstrate ex vivo imaging of the flow induced by cilia activities of human tracheobronchial samples. CONCLUSION: This manuscript presents an ex vivo study on human tracheobronchial ciliated epithelium and its induced mucous flow by using OCT. Within OCT images, intact ciliated epithelium is effectively distinguished from cilia-denuded counterpart, which serves as a negative control, by examining the speckle variance images. The cilia beat frequency is extracted by temporal frequency analysis. The flow rate, flow direction, and particle throughput are obtained through particle tracking. The availability of these quantitative parameters provides us with a powerful tool that will be useful for studying the physiology, pathophysiology and the effectiveness of therapies on epithelial cilia function, as well as serve as a diagnostic tool for diseases associated with ciliary dysmotility. Lasers Surg. Med. 49:270-279, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Sistema Respiratório/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Biópsia por Agulha , Cílios/patologia , Epitélio/diagnóstico por imagem , Epitélio/patologia , Humanos , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Técnicas In Vitro , Depuração Mucociliar/fisiologia , Sistema Respiratório/patologia , Estudos de Amostragem , Sensibilidade e Especificidade , Técnicas de Cultura de Tecidos
20.
Lab Chip ; 13(22): 4460-6, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24080766

RESUMO

We demonstrate a new fluorescent imaging technique that can screen for fluorescent micro-objects over an ultra-wide field-of-view (FOV) of ~532 cm(2), i.e., 19 cm × 28 cm, reaching a space-bandwidth product of more than 2 billion. For achieving such a large FOV, we modified the hardware and software of a commercially available flatbed scanner, and added a custom-designed absorbing fluorescent filter, a two-dimensional array of external light sources for computer-controlled and high-angle fluorescent excitation. We also re-programmed the driver of the scanner to take full control of the scanner hardware and achieve the highest possible exposure time, gain and sensitivity for detection of fluorescent micro-objects through the gradient index self-focusing lens array that is positioned in front of the scanner sensor chip. For example, this large FOV of our imaging platform allows us to screen more than 2.2 mL of undiluted whole blood for detection of fluorescent micro-objects within <5 minutes. This high-throughput fluorescent imaging platform could be useful for rare cell research and cytometry applications by enabling rapid screening of large volumes of optically dense media. Our results constitute the first time that a flatbed scanner has been converted to a fluorescent imaging system, achieving a record large FOV.


Assuntos
Corantes Fluorescentes/química , Aumento da Imagem/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...