Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nano Lett ; 19(4): 2272-2279, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30829039

RESUMO

RNA interference (RNAi) is demonstrated as one of the most powerful technologies for sequence-specific suppression of genes in disease therapeutics. Exploration of novel vehicles for small interfering RNA (siRNA) delivery with high efficiency, low cytotoxicity, and self-monitoring functionality is persistently pursued. Herein, by taking advantage of aggregation-induced emission luminogen (AIEgen), we developed a novel class of Ag@AIE core@shell nanocarriers with regulable and uniform morphology. It presented excellent efficiencies in siRNA delivery, target gene knockdown, and cancer cell inhibition in vitro. What's more, an anticancer efficacy up to 75% was achieved in small animal experiments without obvious toxicity. Attributing to the unique AIE properties, real-time intracellular tracking of siRNA delivery and long-term tumor tissue imaging were successfully realized. Compared to the commercial transfection reagents, significant improvements were obtained in biocompatibility, delivery efficiency, and reproducibility, representing a promising future of this nanocarrier in RNAi-related cancer therapeutics.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Neoplasias/terapia , RNA Interferente Pequeno/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Nanopartículas/química , Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
2.
Genet. mol. biol ; Genet. mol. biol;29(2): 330-338, 2006. tab
Artigo em Inglês | LILACS | ID: lil-432706

RESUMO

Cultivated six-rowed naked barley (Hordeum vulgare ssp. hexastichon var. nudum Hsü) is the oldest cultivated barley in China. We used 35 simple sequence repeat (SSR) markers selected from seven barley linkage groups to study the genetic diversity, geographical differentiation and evolutionary relationships among 65 H. vulgare ssp. hexastichon landrace accessions collected from the Qinghai-Tibet plateau of China, 25 accessions from Tibet (TB), 20 from Qinghai (QH) and 20 from Ganzi (GZ) prefecture in Sichuan province. At the 35 SSR loci we identified 248 alleles among the 65 accessions, 119 (47.98 percent) of the alleles being common alleles. We also found that the TB accessions possessed 47 private alleles, about 1.5 times more than the 31 private alleles found in the QH accessions and about 5 times more than 9 private alleles found in the GZ accessions. Generally, the TB accessions showed significantly higher genetic diversity than either the QH or GZ accessions whereas no significant difference in genetic diversity was found between the QH and GZ accessions. Partitioning analysis of genetic diversity showed that about 81 percent of the total variation was due to within-subgroup diversity and about 19 percent was clearly accounted for by geographical differentiation among the three subgroups. The distributions of alleles for most loci (71.4 percent) were significantly different among the three subgroups and geographical differentiation could be found according to the distribution of SSR alleles. Cluster analysis indicated that most of the accessions could be clustered into groups which basically coincided with their geographical distribution. These results suggest that Tibet might be a center of genetic diversity for cultivated barley, the cultivated six-rowed naked barley on the Qinghai-Tibet plateau of China may have evolved in Tibet and spread to Qinghai and then to Ganzi prefecture of Sichuan province.


Assuntos
Variação Genética , Hordeum/genética , China , Análise por Conglomerados , Geografia , Repetições Minissatélites , Reação em Cadeia da Polimerase , Tibet
3.
Theor Appl Genet ; 109(6): 1133-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15258740

RESUMO

Aegilops tauschii (goat grass) is the progenitor of the D genome in hexaploid bread wheat. We have screened more than 200 Ae. tauschii accessions for resistance against leaf rust (Puccinia triticina) isolates,which are avirulent on the leaf rust resistance gene Lrl. Approximately 3.5% of the Ae. tauschii accessions displayed the same low infection type as the tester line Thatcher Lrl. The accession Tr.t. 213, which showed resistance after artificial infection with Lrl isolates both in Mexico and in Switzerland, was chosen for further analysis. Genetic analysis showed that the resistance in this accession is controlled by a single dominant gene,which mapped at the same chromosomal position as Lrl in wheat. It was delimited in a 1.3-cM region between the restriction fragment length polymorphism (RFLP) markers ABC718 and PSR567 on chromosome 5DL of Ae.tauschii. The gene was more tightly linked to PSR567(0.47 cM) than to ABC718 (0.79 cM). These results indicate that the resistance gene in Ae. tauschii accession Tr.t. 213 is an ortholog of the leaf rust resistance gene Lrlof bread wheat, suggesting that Lrl originally evolved in diploid goat grass and was introgressed into the wheat D genome during or after domestication of hexaploidwheat. Compared to hexaploid wheat, higher marker polymorphism and recombination frequencies were ob-served in the region of the Lrl ortholog in Ae. tauschii. The identification of LrlAe, the orthologous gene of wheatLrl, in Ae. tauschii will allow map-based cloning of Lrlfrom this genetically simpler, diploid genome.


Assuntos
Basidiomycota/genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Imunidade Inata , México , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA