Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
NMR Biomed ; : e5135, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440911

RESUMO

This work develops and evaluates a self-navigated variable density spiral (VDS)-based manifold regularization scheme to prospectively improve dynamic speech magnetic resonance imaging (MRI) at 3 T. Short readout duration spirals (1.3-ms long) were used to minimize sensitivity to off-resonance. A custom 16-channel speech coil was used for improved parallel imaging of vocal tract structures. The manifold model leveraged similarities between frames sharing similar vocal tract postures without explicit motion binning. The self-navigating capability of VDS was leveraged to learn the Laplacian structure of the manifold. Reconstruction was posed as a sensitivity-encoding-based nonlocal soft-weighted temporal regularization scheme. Our approach was compared with view-sharing, low-rank, temporal finite difference, extra dimension-based sparsity reconstruction constraints. Undersampling experiments were conducted on five volunteers performing repetitive and arbitrary speaking tasks at different speaking rates. Quantitative evaluation in terms of mean square error over moving edges was performed in a retrospective undersampling experiment on one volunteer. For prospective undersampling, blinded image quality evaluation in the categories of alias artifacts, spatial blurring, and temporal blurring was performed by three experts in voice research. Region of interest analysis at articulator boundaries was performed in both experiments to assess articulatory motion. Improved performance with manifold reconstruction constraints was observed over existing constraints. With prospective undersampling, a spatial resolution of 2.4 × 2.4 mm2 /pixel and a temporal resolution of 17.4 ms/frame for single-slice imaging, and 52.2 ms/frame for concurrent three-slice imaging, were achieved. We demonstrated implicit motion binning by analyzing the mechanics of the Laplacian matrix. Manifold regularization demonstrated superior image quality scores in reducing spatial and temporal blurring compared with all other reconstruction constraints. While it exhibited faint (nonsignificant) alias artifacts that were similar to temporal finite difference, it provided statistically significant improvements compared with the other constraints. In conclusion, the self-navigated manifold regularized scheme enabled robust high spatiotemporal resolution dynamic speech MRI at 3 T.

2.
Bioengineering (Basel) ; 10(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237693

RESUMO

Dynamic magnetic resonance imaging has emerged as a powerful modality for investigating upper-airway function during speech production. Analyzing the changes in the vocal tract airspace, including the position of soft-tissue articulators (e.g., the tongue and velum), enhances our understanding of speech production. The advent of various fast speech MRI protocols based on sparse sampling and constrained reconstruction has led to the creation of dynamic speech MRI datasets on the order of 80-100 image frames/second. In this paper, we propose a stacked transfer learning U-NET model to segment the deforming vocal tract in 2D mid-sagittal slices of dynamic speech MRI. Our approach leverages (a) low- and mid-level features and (b) high-level features. The low- and mid-level features are derived from models pre-trained on labeled open-source brain tumor MR and lung CT datasets, and an in-house airway labeled dataset. The high-level features are derived from labeled protocol-specific MR images. The applicability of our approach to segmenting dynamic datasets is demonstrated in data acquired from three fast speech MRI protocols: Protocol 1: 3 T-based radial acquisition scheme coupled with a non-linear temporal regularizer, where speakers were producing French speech tokens; Protocol 2: 1.5 T-based uniform density spiral acquisition scheme coupled with a temporal finite difference (FD) sparsity regularization, where speakers were producing fluent speech tokens in English, and Protocol 3: 3 T-based variable density spiral acquisition scheme coupled with manifold regularization, where speakers were producing various speech tokens from the International Phonetic Alphabetic (IPA). Segments from our approach were compared to those from an expert human user (a vocologist), and the conventional U-NET model without transfer learning. Segmentations from a second expert human user (a radiologist) were used as ground truth. Evaluations were performed using the quantitative DICE similarity metric, the Hausdorff distance metric, and segmentation count metric. This approach was successfully adapted to different speech MRI protocols with only a handful of protocol-specific images (e.g., of the order of 20 images), and provided accurate segmentations similar to those of an expert human.

3.
J Med Imaging (Bellingham) ; 10(1): 015502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36852415

RESUMO

Purpose: Task-based assessment of image quality in undersampled magnetic resonance imaging provides a way of evaluating the impact of regularization on task performance. In this work, we evaluated the effect of total variation (TV) and wavelet regularization on human detection of signals with a varying background and validated a model observer in predicting human performance. Approach: Human observer studies used two-alternative forced choice (2-AFC) trials with a small signal known exactly task but with varying backgrounds for fluid-attenuated inversion recovery images reconstructed from undersampled multi-coil data. We used a 3.48 undersampling factor with TV and a wavelet sparsity constraints. The sparse difference-of-Gaussians (S-DOG) observer with internal noise was used to model human observer detection. The internal noise for the S-DOG was chosen to match the average percent correct (PC) in 2-AFC studies for four observers using no regularization. That S-DOG model was used to predict the PC of human observers for a range of regularization parameters. Results: We observed a trend that the human observer detection performance remained fairly constant for a broad range of values in the regularization parameter before decreasing at large values. A similar result was found for the normalized ensemble root mean squared error. Without changing the internal noise, the model observer tracked the performance of the human observers as the regularization was increased but overestimated the PC for large amounts of regularization for TV and wavelet sparsity, as well as the combination of both parameters. Conclusions: For the task we studied, the S-DOG observer was able to reasonably predict human performance with both TV and wavelet sparsity regularizers over a broad range of regularization parameters. We observed a trend that task performance remained fairly constant for a range of regularization parameters before decreasing for large amounts of regularization.

4.
Magn Reson Med ; 89(5): 2117-2130, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36484236

RESUMO

PURPOSE: To develop a custom coil and evaluate its utility for accelerated upper and infraglottic airway MRI at 3 T. METHODS: A 16-channel flexible and anatomy-conforming coil was developed to provide localized sensitivity over upper and infraglottic airway regions of interest. Parallel-imaging capabilities were compared against existing head and head-neck coils. SENSE geometry factor losses were quantified for retrospectively accelerating 3D MRI. Blinded image-quality ratings from two experts were performed. Spiral GRAPPA reconstructions were evaluated for a speaking task at a time resolution of 40 ms. Contrast-to-noise ratios between air and tissue at key landmarks along the vocal tract were compared. SENSE imaging with the custom coil in the lateral recumbent posture was evaluated. Multislice imaging was performed to image swallowing at 17 ms/frame via constrained reconstruction. RESULTS: The custom coil showed improved SENSE imaging up to 3-fold acceleration when accelerated along either the anterior-posterior or the superior-inferior direction and a net 4-fold acceleration when accelerated along both directions. Spiral GRAPPA reconstructions with the custom coil showed higher contrast-to-noise ratio when compared with existing coils. In the lateral posture, robust SENSE imaging was achieved at up to 2-fold and 3-fold acceleration levels in the superior-inferior and anterior-posterior directions, respectively. Key events of swallowing in the multislice dynamic images were identified by an otolaryngologist. CONCLUSION: The coil provided improved parallel imaging of upper and infraglottic airway in both supine and lateral recumbent postures. It enabled efficient accelerated dynamic imaging of speaking and swallowing.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Postura , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
5.
Artigo em Inglês | MEDLINE | ID: mdl-36267385

RESUMO

Two common regularization methods in reconstruction of magnetic resonance images are total variation (TV) which restricts the magnitude of the gradient in the reconstructed image and wavelet sparsity which assumes that the object being imaged is sparse in the wavelet domain. These regularization methods have resulted in images with fewer undersampling artifacts and less noise but introduce their own artifacts. In this work, we extend previous results on modeling of human observer performance for images using TV regularization to also predict human detection performance using wavelet regularization and a combination of wavelet and TV regularization. Small lesions were placed in the coil k-space data for fluid-attenuated inversion recovery (FLAIR) brain images from the fastMRI database. The data was undersampled using an acceleration factor of 3.48. The undersampled data was reconstructed using a range of regularization parameters for both the TV and wavelet regularization. The internal noise level for the sparse difference-of-Gaussians (S-DOG) model observer was chosen to match the average human percent correct in two-alternative forced choice (2-AFC) studies with a signal known exactly with variable backgrounds and no regularization. The S-DOG model largely tracked the human observer results except at large values of the regularization parameter where it outperformed the average human observer. We found that the regularization with either constraint or in combination did not improve human observer performance for this task.

6.
Sci Data ; 8(1): 187, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285240

RESUMO

Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 participants performing linguistically motivated speech tasks, alongside the corresponding public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each participant.


Assuntos
Laringe/fisiologia , Imageamento por Ressonância Magnética/métodos , Fala , Adolescente , Adulto , Sistemas Computacionais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Gravação em Vídeo , Adulto Jovem
7.
Phys Med Biol ; 66(14)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34192682

RESUMO

Constrained reconstruction in magnetic resonance imaging (MRI) allows the use of prior information through constraints to improve reconstructed images. These constraints often take the form of regularization terms in the objective function used for reconstruction. Constrained reconstruction leads to images which appear to have fewer artifacts than reconstructions without constraints but because the methods are typically nonlinear, the reconstructed images have artifacts whose structure is hard to predict. In this work, we compared different methods of optimizing the regularization parameter using a total variation (TV) constraint in the spatial domain and sparsity in the wavelet domain for one-dimensional (2.56×) undersampling using variable density undersampling. We compared the mean squared error (MSE), structural similarity (SSIM), L-curve and the area under the receiver operating characteristic (AUC) using a linear discriminant for detecting a small and a large signal. We used a signal-known-exactly task with varying backgrounds in a simulation where the anatomical variation was the major source of clutter for the detection task. Our results show that the AUC dependence on regularization parameters varies with the imaging task (i.e. the signal being detected). The choice of regularization parameters for MSE, SSIM, L-curve and AUC were similar. We also found that a model-based reconstruction including TV and wavelet sparsity did slightly better in terms of AUC than just enforcing data consistency but using these constraints resulted in much better MSE and SSIM. These results suggest that the increased performance in MSE and SSIM over-estimate the improvement in detection performance for the tasks in this paper. The MSE and SSIM metrics show a big difference in performance where the difference in AUC is small. To our knowledge, this is the first time that signal detection with varying backgrounds has been used to optimize constrained reconstruction in MRI.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Artefatos , Simulação por Computador , Processamento de Imagem Assistida por Computador
8.
Artigo em Inglês | MEDLINE | ID: mdl-36267661

RESUMO

Task-based assessment of image quality in undersampled magnetic resonance imaging (MRI) using constraints is important because of the need to quantify the effect of the artifacts on task performance. Fluid-attenuated inversion recovery (FLAIR) images are used in detection of small metastases in the brain. In this work we carry out two-alternative forced choice (2-AFC) studies with a small signal known exactly (SKE) but with varying background for reconstructed FLAIR images from undersampled multi-coil data. Using a 4x undersampling and a total variation (TV) constraint we found that the human observer detection performance remained fairly constant for a broad range of values in the regularization parameter before decreasing at large values. Using the TV constraint did not improve task performance. The non- prewhitening eye (NPWE) observer and sparse difference-of-Gaussians (S-DOG) observer with internal noise were used to model human observer detection. The parameters for the NPWE and the internal noise for the S-DOG were chosen to match the average percent correct (PC) in 2-AFC studies for three observers using no regularization. The NPWE model observer tracked the performance of the human observers as the regularization was increased but slightly over-estimated the PC for large amounts of regularization. The S-DOG model observer with internal noise tracked human performace for all levels of regularization studied. To our knowledge this is the first time that model observers have been used to track human observer detection for undersampled MRI.

9.
Med Phys ; 47(1): 37-51, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663134

RESUMO

PURPOSE: To apply tracer kinetic models as temporal constraints during reconstruction of under-sampled brain tumor dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI). METHODS: A library of concentration vs time profiles is simulated for a range of physiological kinetic parameters. The library is reduced to a dictionary of temporal bases, where each profile is approximated by a sparse linear combination of the bases. Image reconstruction is formulated as estimation of concentration profiles and sparse model coefficients with a fixed sparsity level. Simulations are performed to evaluate modeling error, and error statistics in kinetic parameter estimation in presence of noise. Retrospective under-sampling experiments are performed on a brain tumor DCE digital reference object (DRO), and 12 brain tumor in-vivo 3T datasets. The performances of the proposed under-sampled reconstruction scheme and an existing compressed sensing-based temporal finite-difference (tFD) under-sampled reconstruction were compared against the fully sampled inverse Fourier Transform-based reconstruction. RESULTS: Simulations demonstrate that sparsity levels of 2 and 3 model the library profiles from the Patlak and extended Tofts-Kety (ETK) models, respectively. Noise sensitivity analysis showed equivalent kinetic parameter estimation error statistics from noisy concentration profiles, and model approximated profiles. DRO-based experiments showed good fidelity in recovery of kinetic maps from 20-fold under-sampled data. In-vivo experiments demonstrated reduced bias and uncertainty in kinetic mapping with the proposed approach compared to tFD at under-sampled reduction factors >= 20. CONCLUSIONS: Tracer kinetic models can be applied as temporal constraints during brain tumor DCE-MRI reconstruction. The proposed under-sampled scheme resulted in model parameter estimates less biased with respect to conventional fully sampled DCE MRI reconstructions and parameter estimation. The approach is flexible, can use nonlinear kinetic models, and does not require tuning of regularization parameters.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Meios de Contraste , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Biológicos , Adulto , Idoso , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Traçadores Radioativos
10.
Magn Reson Med ; 81(1): 234-246, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058147

RESUMO

PURPOSE: To improve the depiction and tracking of vocal tract articulators in spiral real-time MRI (RT-MRI) of speech production by estimating and correcting for dynamic changes in off-resonance. METHODS: The proposed method computes a dynamic field map from the phase of single-TE dynamic images after a coil phase compensation where complex coil sensitivity maps are estimated from the single-TE dynamic scan itself. This method is tested using simulations and in vivo data. The depiction of air-tissue boundaries is evaluated quantitatively using a sharpness metric and visual inspection. RESULTS: Simulations demonstrate that the proposed method provides robust off-resonance correction for spiral readout durations up to 5 ms at 1.5T. In -vivo experiments during human speech production demonstrate that image sharpness is improved in a majority of data sets at air-tissue boundaries including the upper lip, hard palate, soft palate, and tongue boundaries, whereas the lower lip shows little improvement in the edge sharpness after correction. CONCLUSION: Dynamic off-resonance correction is feasible from single-TE spiral RT-MRI data, and provides a practical performance improvement in articulator sharpness when applied to speech production imaging.


Assuntos
Imageamento por Ressonância Magnética , Boca/diagnóstico por imagem , Palato Mole/fisiologia , Faringe/fisiologia , Processamento de Sinais Assistido por Computador , Fala/fisiologia , Algoritmos , Simulação por Computador , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Língua/fisiologia
11.
Magn Reson Med ; 81(3): 1511-1520, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390319

RESUMO

PURPOSE: To develop and evaluate a technique for 3D dynamic MRI of the full vocal tract at high temporal resolution during natural speech. METHODS: We demonstrate 2.4 × 2.4 × 5.8 mm3 spatial resolution, 61-ms temporal resolution, and a 200 × 200 × 70 mm3 FOV. The proposed method uses 3D gradient-echo imaging with a custom upper-airway coil, a minimum-phase slab excitation, stack-of-spirals readout, pseudo golden-angle view order in kx -ky , linear Cartesian order along kz , and spatiotemporal finite difference constrained reconstruction, with 13-fold acceleration. This technique is evaluated using in vivo vocal tract airway data from 2 healthy subjects acquired at 1.5T scanner, 1 with synchronized audio, with 2 tasks during production of natural speech, and via comparison with interleaved multislice 2D dynamic MRI. RESULTS: This technique captured known dynamics of vocal tract articulators during natural speech tasks including tongue gestures during the production of consonants "s" and "l" and of consonant-vowel syllables, and was additionally consistent with 2D dynamic MRI. Coordination of lingual (tongue) movements for consonants is demonstrated via volume-of-interest analysis. Vocal tract area function dynamics revealed critical lingual constriction events along the length of the vocal tract for consonants and vowels. CONCLUSION: We demonstrate feasibility of 3D dynamic MRI of the full vocal tract, with spatiotemporal resolution adequate to visualize lingual movements for consonants and vocal tact shaping during natural productions of consonant-vowel syllables, without requiring multiple repetitions.


Assuntos
Imageamento Tridimensional/métodos , Laringe/diagnóstico por imagem , Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Medida da Produção da Fala/métodos , Fala/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Masculino , Movimento , Reprodutibilidade dos Testes , Língua , Gravação em Vídeo
12.
Magn Reson Med ; 79(5): 2804-2815, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28905411

RESUMO

PURPOSE: To develop and evaluate a model-based reconstruction framework for joint arterial input function (AIF) and kinetic parameter estimation from undersampled brain tumor dynamic contrast-enhanced MRI (DCE-MRI) data. METHODS: The proposed method poses the tracer-kinetic (TK) model as a model consistency constraint, enabling the flexible inclusion of different TK models and TK solvers, and the joint estimation of the AIF. The proposed method is evaluated using an anatomic realistic digital reference object (DRO), and nine retrospectively down-sampled brain tumor DCE-MRI datasets. We also demonstrate application to 30-fold prospectively undersampled brain tumor DCE-MRI. RESULTS: In DRO studies with up to 60-fold undersampling, the proposed method provided TK maps with low error that were comparable to fully sampled data and were demonstrated to be compatible with a third-party TK solver. In retrospective undersampling studies, this method provided patient-specific AIF with normalized root mean-squared-error (normalized by the 90th percentile value) less than 8% at up to 100-fold undersampling. In the 30-fold undersampled prospective study, the proposed method provided high-resolution whole-brain TK maps and patient-specific AIF. CONCLUSION: The proposed model-based DCE-MRI reconstruction enables the use of different TK solvers with a model consistency constraint and enables joint estimation of patient-specific AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold undersampling in k,t-space. Magn Reson Med 79:2804-2815, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Meios de Contraste/química , Meios de Contraste/farmacocinética , Humanos , Cinética , Masculino
13.
J Acoust Soc Am ; 141(5): 3323, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28599561

RESUMO

Static anatomical and real-time dynamic magnetic resonance imaging (RT-MRI) of the upper airway is a valuable method for studying speech production in research and clinical settings. The test-retest repeatability of quantitative imaging biomarkers is an important parameter, since it limits the effect sizes and intragroup differences that can be studied. Therefore, this study aims to present a framework for determining the test-retest repeatability of quantitative speech biomarkers from static MRI and RT-MRI, and apply the framework to healthy volunteers. Subjects (n = 8, 4 females, 4 males) are imaged in two scans on the same day, including static images and dynamic RT-MRI of speech tasks. The inter-study agreement is quantified using intraclass correlation coefficient (ICC) and mean within-subject standard deviation (σe). Inter-study agreement is strong to very strong for static measures (ICC: min/median/max 0.71/0.89/0.98, σe: 0.90/2.20/6.72 mm), poor to strong for dynamic RT-MRI measures of articulator motion range (ICC: 0.26/0.75/0.90, σe: 1.6/2.5/3.6 mm), and poor to very strong for velocities (ICC: 0.21/0.56/0.93, σe: 2.2/4.4/16.7 cm/s). In conclusion, this study characterizes repeatability of static and dynamic MRI-derived speech biomarkers using state-of-the-art imaging. The introduced framework can be used to guide future development of speech biomarkers. Test-retest MRI data are provided free for research use.


Assuntos
Laringe/diagnóstico por imagem , Imageamento por Ressonância Magnética , Boca/diagnóstico por imagem , Faringe/diagnóstico por imagem , Fala , Acústica , Adulto , Pontos de Referência Anatômicos , Fenômenos Biomecânicos , Feminino , Humanos , Laringe/fisiologia , Masculino , Boca/fisiologia , Faringe/fisiologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Medida da Produção da Fala , Fatores de Tempo , Adulto Jovem
14.
Magn Reson Med ; 78(6): 2275-2282, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28185301

RESUMO

PURPOSE: To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. METHODS: Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. RESULTS: Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. CONCLUSION: Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Laringe/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fala , Algoritmos , Artefatos , Calibragem , Epiglote/diagnóstico por imagem , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Faringe/diagnóstico por imagem , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Software
15.
Magn Reson Med ; 77(1): 112-125, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26778178

RESUMO

PURPOSE: The aim of this work was to develop and evaluate an MRI-based system for study of dynamic vocal tract shaping during speech production, which provides high spatial and temporal resolution. METHODS: The proposed system utilizes (a) custom eight-channel upper airway coils that have high sensitivity to upper airway regions of interest, (b) two-dimensional golden angle spiral gradient echo acquisition, (c) on-the-fly view-sharing reconstruction, and (d) off-line temporal finite difference constrained reconstruction. The system also provides simultaneous noise-cancelled and temporally aligned audio. The system is evaluated in 3 healthy volunteers, and 1 tongue cancer patient, with a broad range of speech tasks. RESULTS: We report spatiotemporal resolutions of 2.4 × 2.4 mm2 every 12 ms for single-slice imaging, and 2.4 × 2.4 mm2 every 36 ms for three-slice imaging, which reflects roughly 7-fold acceleration over Nyquist sampling. This system demonstrates improved temporal fidelity in capturing rapid vocal tract shaping for tasks, such as producing consonant clusters in speech, and beat-boxing sounds. Novel acoustic-articulatory analysis was also demonstrated. CONCLUSION: A synergistic combination of custom coils, spiral acquisitions, and constrained reconstruction enables visualization of rapid speech with high spatiotemporal resolution in multiple planes. Magn Reson Med 77:112-125, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Espectrografia do Som/métodos , Fala/fisiologia , Prega Vocal/diagnóstico por imagem , Adulto , Algoritmos , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Neoplasias da Língua/diagnóstico por imagem
16.
Magn Reson Med ; 78(4): 1566-1578, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27859563

RESUMO

PURPOSE: The purpose of this work was to develop and evaluate a T1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. THEORY AND METHODS: The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. RESULTS: In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. CONCLUSION: Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Humanos , Masculino , Imagens de Fantasmas , Estudos Retrospectivos
17.
Magn Reson Med ; 77(3): 1238-1248, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091812

RESUMO

PURPOSE: To introduce a fast algorithm for motion-compensated accelerated dynamic MRI. METHODS: An efficient patch smoothness regularization scheme, which implicitly compensates for inter-frame motion, is introduced to recover dynamic MRI data from highly undersampled measurements. The regularization prior is a sum of distances between each rectangular patch in the dataset with other patches in the dataset using a saturating distance metric. Unlike current motion estimation and motion compensation (ME-MC) methods, the proposed scheme does not require reference frames or complex motion models. The proposed algorithm, which alternates between inter-patch shrinkage step and conjugate gradient algorithm, is considerably more computationally efficient than ME-MC methods. The reconstructions obtained using the proposed algorithm is compared against state-of-the-art methods. RESULTS: The proposed method is observed to yield reconstructions with minimal spatiotemporal blurring and motion artifacts. In comparison to the existing state-of-the-art ME-MC methods, PRICE provides comparable or even better image quality with faster reconstruction times (approximately nine times faster). CONCLUSION: The presented scheme enables computationally efficient and effective motion-compensated reconstruction in a variety of applications with large inter-frame motion and contrast changes. This algorithm could be seen as an alternative over the current state-of-the-art ME-MC schemes that are computationally expensive. Magn Reson Med 77:1238-1248, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Artefatos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Humanos , Movimento (Física) , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
18.
Med Phys ; 43(5): 2013, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147313

RESUMO

PURPOSE: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. METHODS: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. RESULTS: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. CONCLUSIONS: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
19.
Magn Reson Imaging ; 34(6): 707-714, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26968142

RESUMO

PURPOSE: To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. METHODS: A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. RESULTS: At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. CONCLUSION: Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Algoritmos , Suspensão da Respiração , Coração/fisiologia , Humanos , Estudos Prospectivos , Estudos Retrospectivos
20.
Invest Radiol ; 51(6): 387-99, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26863578

RESUMO

OBJECTIVES: The objective of this study was to increase the spatial and temporal resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MRI) of lung volumes and diaphragm motion. To achieve this goal, we evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data from highly undersampled measurements. MATERIALS AND METHODS: We evaluated the performance of the BCS scheme to recover dynamic data sets from retrospectively and prospectively undersampled measurements. We also compared its performance against that of view-sharing, the nuclear norm minimization scheme, and the l1 Fourier sparsity regularization scheme. Quantitative experiments were performed on a healthy subject using a fully sampled 2D data set with uniform radial sampling, which was retrospectively undersampled with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images obtained from the 4 reconstruction schemes were compared with the fully sampled data using mean square error and normalized high-frequency error metrics. The schemes were also compared using prospective 3D data acquired on a Siemens 3 T TIM TRIO MRI scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualitatively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on the basis of spatial resolution, temporal resolution, and presence of aliasing artifacts. RESULTS: The BCS scheme gives better reconstructions (mean square error = 0.0232 and normalized high frequency = 0.133) than the other schemes in the 2D retrospective undersampling experiments, producing minimally distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D experiments show that the BCS scheme provides visually improved reconstructions than the other schemes do. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and BCS scheme are comparable.The comparisons of the tidal volume changes also show that the BCS scheme has less temporal blurring as compared with the nuclear norm minimization scheme and the l1 Fourier sparsity regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine position (4 L/min) and the measured supine inspiratory capacity (1.5 L) is in good correlation with the literature. The improved performance of BCS can be explained by its ability to efficiently adapt to the data, thus providing a richer representation of the signal. CONCLUSION: The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ∼500 milliseconds, spatial resolution of 2.7 × 2.7 × 10 mm, with whole lung coverage (16 slices) was achieved using the BCS scheme.


Assuntos
Algoritmos , Diafragma/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Artefatos , Diafragma/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Movimento (Física) , Estudos Prospectivos , Valores de Referência , Respiração , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...