Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118724, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32769058

RESUMO

Recently, a series of carbazole derivatives containing chalcone analogues (CDCAs) were synthetized as potent anticancer agents and apoptosis inducers. These compounds target the inhibition of topoisomerase II and present cytotoxic activities. After comparison to experiment, we validated the use of B3LYP, a density functional theory-based approach, to describe the structure and molecular properties of the carbazole subunit and CDCAs compounds of interest. Then, we derived relationships between the chemical descriptors and activity of these carbazole derivatives using multi-parameter optimization and quantitative structure activity relationships (QSAR) approaches. For the QSAR studies, we used multiple linear regression and artificial neural network statistical modelling. Our predicted activities are in good agreement with the experimental ones. We found that the most important parameter influencing the activity of the considered compounds is the octanol-water partition coefficient, highlighting the importance of flexibility as a key molecular parameter to favor cell membrane crossing and enhance the action of these CDCAs against topoisomerase II. Our results provide useful guidelines for designing new oral active CDCAs medicaments for cytotoxic inhibition.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Antineoplásicos/farmacologia , Carbazóis/toxicidade , DNA Topoisomerases Tipo II/metabolismo , Relação Quantitativa Estrutura-Atividade
2.
Phys Chem Chem Phys ; 21(29): 16120-16126, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31290871

RESUMO

Using an ab initio methodology and mass spectrometric study we identify AuO2+ as a metastable species in the gas phase. This represents the first characterization of a gas phase compound of gold with the oxidation state +4. Computations show that this dication exhibits deep potential wells with long lived electronic states. Its electronic ground state is of 4∑- symmetry, which is known for very few molecular ground states. We also discussed the O + Au2+ collision dynamics, which leads mostly to charge transfer to form Au+ and O+ species. This identification may help in identifying new routes for the reactivity of gold in the gas phase, in solution and in the condensed phase.

3.
J Phys Chem A ; 123(6): 1177-1185, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30648873

RESUMO

From highly correlated ab initio methods at the CCSD(T) level, with and without the inclusion of scalar relativistic effects, accurate 3D potential energy surfaces (PESs) of CuSH and CuOH were generated in their electronic ground state. The PESs are incorporated into perturbative and variational treatments of nuclear motions. Using these approaches, we derived a set of accurate spectroscopic parameters and the pattern of the vibrational states of CuXH (X = O,S) up to 4000 cm-1. The applied calculations at the CCSD(T)/aug-cc-pV5Z-DK level of theory are validated using several experimental high-resolution spectroscopy data (including rotational spectroscopy) available in the literature. The optimized equilibrium geometries of CuSH and CuOH with bending angles of 93.9° and 110.2°, Cu-X bond lengths of 2.088 and 1.764 Å, and X-H bond lengths of 1.344 and 0.961 Å, respectively, accurately reproduce the experimental structures and clearly show the importance of the scalar relativistic effects. The anharmonic frequencies, ν1, ν2, and ν3, are computed at 3655.5, 746.3, and 623.3 cm-1 for CuOH and at 2572.9, 588.9, and 396.6 cm-1 for CuSH, respectively. Finally, the PESs are derived as anharmonic force fields for CuXH (X = O, S) that can be incorporated into large scale molecular dynamics simulations of Cu-X containing compounds. The results are discussed within the scope of available literature on the effects of substitution of oxygen by sulfur for putative molecular recognition mechanisms.

4.
J Chem Phys ; 149(16): 164303, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384700

RESUMO

The stable low energy states of the HPS and DPS molecules have been studied through multi-reference ab initio methods in conjunction with large atomic basis sets. Stable states for these species have been examined up to 7 eV above the ground state minimum. We found six stable electronic states that are mostly mono-configurational. These states may be involved in the photodynamics and photodissociation of this molecule. In particular, the 2 1A' state presents two minima on the potential energy surface, one of them close to linear configuration. This state may be populated after the absorption of a visible photon from the ground state and gives rise to large amplitude motions that may eventually induce isomerization to electronically excited HSP. Moreover, we characterized these states spectroscopically to facilitate the assignment of the vibronic spectra of the HPS and DPS species. For these low-energy states, we thus computed vertical and adiabatic excitation energies, and for the stable ones, a full set of spectroscopic constants including harmonic frequencies and anharmonic vibrational, rotational, and centrifugal distortion constants. The calculated potential energy surfaces for these states have been used in a variational procedure to deduce the pattern of vibrational levels up to 4000 cm-1 above the corresponding vibrationless level. Our data may serve for the assignment of the IR and Vis spectra of HPS and DPS.

5.
Faraday Discuss ; 212(0): 51-64, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30234210

RESUMO

The ethynyl cation, C2H+, is of great importance in astrophysical media and in combustion. It is involved in the formation of larger organic compounds and in their decomposition mechanisms. Here, we investigate the low-lying electronic states of this cation using pure ab initio methodologies. The evolution of its potential energy surfaces along the stretching and bending coordinates reveals a high density of electronic states that favours mutual interactions and the mixing of wavefunctions. The ground state is of 3Π space symmetry and the lowest singlet state (1Π) is found to be a quasi-linear-quasi-linear Renner-Teller system. Our work suggests that the (spin-)rovibronic spectrum of such a molecular system is complicated, because of the contributions of multiple couplings, including Renner-Teller, vibronic and spin-orbit. We also deduced the adiabatic ionization energy of the ethynyl radical, in good agreement with recent measurements. In summary, our work shows that the ethynyl cation, in spite of its small size, still represents a challenging molecular problem to be solved.

6.
J Phys Chem Lett ; 8(11): 2420-2424, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498666

RESUMO

Full-dimensional semiclassical dynamical calculations combining classical paths and Bohr quantization of product internal motions are reported for the prototype photofragmentation of isocyanic acid in the S1 state. These calculations allow one to closely reproduce for the first time key features of state-of-the-art imaging measurements at photolysis wavelengths of 201 and 210 nm while providing insight into the underlying dissociation mechanism. Quantum scattering calculations being beyond reach for most polyatomic fissions, pair-correlated data on these processes are much more often measured than predicted. Our theoretical approach can be used to fill this gap.

7.
J Phys Chem A ; 120(10): 1669-76, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26911361

RESUMO

Small methane clusters (CH4)n are irradiated using intense femtosecond laser excitation at 624 nm. The ionized species and those resulting from their fragmentation are detected via time-of-flight mass spectrometry (TOF MS). We find evidence of bound, multiply charged methane molecules and clusters resulting from Coulomb explosion upon exposure to highly energetic, ultrafast radiation. The assignment of the mass spectra is done after first-principles calculations (at the (R)MP2/aug-cc-pVXZ (X = D,T) level) on the charged (CH4)n(q+) clusters (n = 1-4, q = 1-4). We also considered the cluster stabilities and fragments that may result from intracluster molecular reactivity. Complex intracluster ion-molecule reactions induced by photoionization are expected to occur. Interestingly, we show that multi charged small methane clusters undergo intracluster reactions and fragmentations which are different from those observed for isolated methane ions or for large ionized methane clusters.

8.
J Chem Phys ; 143(16): 164301, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520507

RESUMO

The low-energy electronic states of NSO anion and its SNO isomeric form for the singlet, triplet, and quintet spin multiplicities have been investigated by accurate ab initio approaches and large atomic basis sets. One-dimensional cuts of the three-dimensional potential energy surfaces (PESs) along selected interatomic distances and bending angles for these states have been calculated to assess the formation and stability of NSO(-) and SNO(-) in the gas phase. Results show that these anions have two low-energy states (X̃(1)A(') and 1(3)A″) that are bound and stable with respect to electron detachment. Owing to the energetic position of the dissociating asymptotes of the neutral and anionic species, several electronic excited states are suggested to be stable with respect to the electron autodetachment process in the long-range parts of the potentials before reaching the molecular region. The nature of the PESs in these regions and their implications and effects on the formation of SNO(-) from atomic and molecular fragments are discussed. This information is essential for a better understanding of the potential role of these species in diverse media.

9.
J Chem Phys ; 143(18): 184314, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567669

RESUMO

In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations.

10.
J Chem Phys ; 140(24): 244309, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985640

RESUMO

We performed accurate ab initio investigations of the geometric parameters and the vibrational structure of neutral HNS/HSN triatomics and their singly charged anions and cations. We used standard and explicitly correlated coupled cluster approaches in connection with large basis sets. At the highest levels of description, we show that results nicely approach those obtained at the complete basis set limit. Moreover, we generated the three-dimensional potential energy surfaces (3D PESs) for these molecular entities at the coupled cluster level with singles and doubles and a perturbative treatment of triple excitations, along with a basis set of augmented quintuple-zeta quality (aug-cc-pV5Z). A full set of spectroscopic constants are deduced from these potentials by applying perturbation theory. In addition, these 3D PESs are incorporated into variational treatment of the nuclear motions. The pattern of the lowest vibrational levels and corresponding wavefunctions, up to around 4000 cm(-1) above the corresponding potential energy minimum, is presented for the first time.

11.
J Phys Chem A ; 118(27): 4975-81, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25007894

RESUMO

Due to strong electron correlation effects and electron coupling with nuclear motion, the molecular inner-valence photoionization is still a challenge in electron spectroscopy, resulting in several interesting phenomena such as drastic changes of angular dependencies, spin-orbit induced predissociation, and complex interplay between adiabatic and nonadiabatic transitions. We investigated the excited electronic states of HCl(+) in the binding energy range 27.5-30.5 eV using synchrotron radiation based high-resolution inner-valence photoelectron spectroscopy with angular resolution and interpreted the observations with the help of ab initio calculations. Overlapping electronic states in this region were disentangled through the analysis of photoelectron emission anisotropies. For instance, a puzzling transition, which does not seem to obey either an adiabatic or a nonadiabatic picture, has been identified at ∼28.6 eV binding energy. By this study, we show that ultrahigh-resolution photoelectron spectroscopy with angular selectivity represents a powerful tool to probe the highly excited ionic molecular electronic states and their intricate couplings.

12.
Phys Chem Chem Phys ; 15(3): 824-31, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23202808

RESUMO

Franzreb and Williams at Arizona State University detected recently the MgO(2+) molecular species in the gas phase. Here we report a very detailed theoretical investigation of the low-lying electronic states of this dication including their potentials, spin-orbit, rotational and radial couplings. Our results show that the potential energy curves of the dicationic electronic states have deep potential wells. This confirms that this dication does exist in the gas phase; it is a thermodynamically stable molecule in its ground state, and it has several excited long-lived metastable states. The potential energy curves are used then to predict a set of spectroscopic parameters for the bound states of MgO(2+). We have also incorporated these potentials, rotational and radial couplings in dynamical calculations to derive the cross sections for the charge transfer Mg(2+) + O → Mg(+) + O(+) reaction in the 1-10(3) eV collision energy domain via formation-decomposition of the MgO(2+) dication. Our work shows the role of MgO(2+) in the Earth ionosphere and more generally in atmospheric processes in solar planets, where this reaction efficiently participates in the predominance of Mg(+) cations in these media compared to Mg and Mg(2+).

13.
Minerva Chir ; 51(3): 159-61, 1996 Mar.
Artigo em Italiano | MEDLINE | ID: mdl-8684655

RESUMO

A case of cystic lymphangioma is reported, located on the mesentery of the jejunum in a fifty-seven year old patient. The lymphangioma is an extremely rare disease and it is often located in the neck and arm pit. An intra abdominal and mediastinal location takes place in just 5% of the examined cases. Pre operative exams are taken into account; computerized (Axial) tomography and echo tomography have made diagnosis possible. The surgical therapy is the preferred treatment; no therapeutic options exist. The radical extirpation of the mass becomes necessary to avoid relapses.


Assuntos
Neoplasias Abdominais/diagnóstico , Linfangioma Cístico/diagnóstico , Neoplasias Abdominais/patologia , Neoplasias Abdominais/cirurgia , Humanos , Linfangioma Cístico/patologia , Linfangioma Cístico/cirurgia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...