Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299252

RESUMO

This study aimed to improve the mechanical properties of a composite material consisting of waste leather fibers (LF) and nitrile rubber (NBR) by partially replacing LF with waste polyamide fibers (PA). A ternary recycled composite NBR/LF/PA was produced by a simple mixing method and vulcanized by compression molding. The mechanical properties and dynamic mechanical properties of the composite were investigated in detail. The results showed that the mechanical properties of NBR/LF/PA increased with an increase in the PA ratio. The highest tensile strength value of NBR/LF/PA was found to have increased about 1.26 times, that is from 12.9 MPa of LF50 to 16.3 MPa of LF25PA25. Additionally, the ternary composite demonstrated high hysteresis loss, which was confirmed by dynamic mechanical analysis (DMA). The presence of PA formed a non-woven network that significantly enhanced the abrasion resistance of the composite compared to NBR/LF. The failure mechanism was also analyzed through the observation of the failure surface using scanning electron microscopy (SEM). These findings suggest that the utilization of both waste fiber products together is a sustainable approach to reducing fibrous waste while improving the qualities of recycled rubber composites.

2.
Polymers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396794

RESUMO

In this study, we present the fabrication of nitrile butadiene rubber/waste leather fiber (NBR/WLF) composites with different weight percentages of WLF and NBR (0/100, 20/80, 30/70, 40/60, 50/50, 60/40 wt/wt). WLF was prepared by cutting the scrap leathers from the waste product of the Vietnamese leather industry. Subsequently, in order to make the short fibers, it was mixed by a hammer mill. The characteristics of WLF/NBR composites such as mechanical properties (tensile strength, tear strength, hardness), dynamic mechanical properties, toluene absorption, and morphology were carefully evaluated. As a result, the tensile strength and tear strength become larger with increasing WLF content from 0 to 50 wt% and they decrease when further increasing WLF content. The highest tensile strength of 12.5 MPa and tear strength of 72.47 N/mm were achieved with the WLF/NBR ratio of 50/50 wt%. Both hardness and resistance of the developed materials with toluene increased with increasing WLF content. The SEM results showed a good adhesion of NBR matrix and the WLF. The increasing of storage modulus (E') in comparison with raw NBR showed good compatibility between WLF and NBR matrix. This research showed that the recycled material from waste leather and NBR was successfully prepared and has great potential for manufacturing products such as floor covering courts and playgrounds, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...