Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dev Neurosci ; 82(5): 407-422, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35481929

RESUMO

Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation and organisation of neural circuitries related to emotional, cognitive and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalisation. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20 mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over 4 weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.


Assuntos
Ritmo Circadiano , Fluoxetina , Efeitos Tardios da Exposição Pré-Natal , Animais , Antidepressivos , Ritmo Circadiano/fisiologia , Feminino , Fluoxetina/farmacologia , Locomoção , Masculino , Neuropeptídeo Y , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar , Serotonina/metabolismo
2.
Int J Dev Neurosci ; 81(7): 616-632, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34196404

RESUMO

The exposure to selective serotonin reuptake inhibitors (SSRIs) during development results in behavioural impairment in adulthood in humans and animal models. Indeed, serotonergic overexpression in early life leads to structural and functional changes in brain circuits that control cognition and emotion. However, the effects of developmental exposure to these substances on the behaviour of adolescent rats are conflicting and remain poorly characterised. We performed a behavioural screening to investigate the effects of postnatal exposure to fluoxetine on memory and behaviours related to anxiety, anhedonia, and depression, as well we evaluate the parvalbumin expression in hippocampus of juvenile (~PND45) female and male rats. Fluoxetine (daily 20 mg/kg s.c. injections from PND7-PND21)- or vehicle-treated adolescent rats went through several behavioural tasks (from PND 38 to PND52) and were subject to transcardial perfusion and brain removal for immunohistochemical analysis (PND53). We found that postnatal exposure to fluoxetine increased anxiety- and depression-like behaviours in the open field and sucrose preference and forced swimming tests, respectively. In addition, this treatment induced working memory and short-term (but not long-term) recognition memory impairments, and reduced parvalbumin-positive interneurons in the hippocampus. In addition, the results revealed developmental sex-dependent effects of fluoxetine postnatal treatment on adolescent rats' behaviour. These outcomes indicate that affective disorders and mnemonic alterations caused by SSRIs perinatal exposure can be present at adolescence.


Assuntos
Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Parvalbuminas/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...