Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 41(18): 3674-84, 2002 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12078695

RESUMO

A simulation study is presented that evaluates the ability of a unit-shear, shearing interferometer to estimate a complex field resulting from propagation through extended turbulence. Performance is defined in terms of the Strehl ratio achieved when the estimate of the complex field obtained from reconstruction is used to correct the distorted wave front presented to the wave-front sensor. A series of evaluations is performed to identify the strengths and weaknesses of the shearing interferometer in the two-dimensional space of the Fried parameter r0 and the Rytov number. The performance of the shearing interferometer is compared with that of a Hartmann sensor in the Fried and Hutchin geometries. Although the effects of additive measurement noise (such as read noise, shot noise, amplifier noise) are neglected, the fundamental characteristics of the measurement process are shown to distinguish the performance of the various wave-front sensors. It is found that the performance of a shearing interferometer is superior to that of a Hartmann sensor when the Rytov number exceeds 0.2.

2.
Appl Opt ; 41(6): 1012-21, 2002 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11900119

RESUMO

A simulation study is presented that evaluates the performance of Hartmann wave-front sensors with measurements obtained with the Fried geometry and the Hutchin geometry. Performance is defined in terms of the Strehl ratio achieved when the estimate of the complex field obtained from reconstruction is used to correct the distorted wave front presented to the wave-front sensor. A series of evaluations is performed to identify the strengths and the weaknesses of Hartmann sensors used in each of the two geometries in the two-dimensional space of the Fried parameter r0 and the Rytov parameter. We found that the performance of Hartmann sensors degrades severely when the Rytov number exceeds 0.2 and the ratio l/r0 exceeds 1/4 (where l is the subaperture side length) because of the presence of branch points in the phase function and the effect of amplitude scintillation on the measurement values produced by the Hartmann sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...