Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 113(4): 770-774, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28755755

RESUMO

The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone.


Assuntos
Forma Celular , Elasticidade , Fibroblastos/citologia , Estresse Mecânico , Animais , Adesão Celular , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Modelos Biológicos , Imagem Molecular , Células NIH 3T3
2.
Nat Commun ; 8: 15817, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604737

RESUMO

Cytoskeletal mechanics regulates cell morphodynamics and many physiological processes. While contractility is known to be largely RhoA-dependent, the process by which localized biochemical signals are translated into cell-level responses is poorly understood. Here we combine optogenetic control of RhoA, live-cell imaging and traction force microscopy to investigate the dynamics of actomyosin-based force generation. Local activation of RhoA not only stimulates local recruitment of actin and myosin but also increased traction forces that rapidly propagate across the cell via stress fibres and drive increased actin flow. Surprisingly, this flow reverses direction when local RhoA activation stops. We identify zyxin as a regulator of stress fibre mechanics, as stress fibres are fluid-like without flow reversal in its absence. Using a physical model, we demonstrate that stress fibres behave elastic-like, even at timescales exceeding turnover of constituent proteins. Such molecular control of actin mechanics likely plays critical roles in regulating morphodynamic events.


Assuntos
Fibras de Estresse/fisiologia , Zixina/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Animais , Mecanotransdução Celular , Camundongos , Células NIH 3T3 , Optogenética , Fibras de Estresse/metabolismo , Zixina/genética , Zixina/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Cell Microbiol ; 19(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27450804

RESUMO

During intraerythrocytic development, Plasmodium falciparum increases the ion permeability of the erythrocyte plasma membrane to an extent that jeopardizes the osmotic stability of the host cell. A previously formulated numeric model has suggested that the parasite prevents premature rupture of the host cell by consuming hemoglobin (Hb) in excess of its own anabolic needs. Here, we have tested the colloid-osmotic model on the grounds of time-resolved experimental measurements on cell surface area and volume. We have further verified whether the colloid-osmotic model can predict time-dependent volumetric changes when parasites are grown in erythrocytes containing the hemoglobin variants S or C. A good agreement between model-predicted and empirical data on both infected erythrocyte and intracellular parasite volume was found for parasitized HbAA and HbAC erythrocytes. However, a delayed induction of the new permeation pathways needed to be taken into consideration for the latter case. For parasitized HbAS erythrocyte, volumes diverged from model predictions, and infected erythrocytes showed excessive vesiculation during the replication cycle. We conclude that the colloid-osmotic model provides a plausible and experimentally supported explanation of the volume expansion and osmotic stability of P. falciparum-infected erythrocytes. The contribution of vesiculation to the malaria-protective function of hemoglobin S is discussed.


Assuntos
Membrana Celular/fisiologia , Eritrócitos/citologia , Eritrócitos/parasitologia , Hemoglobinopatias/patologia , Interações Hospedeiro-Patógeno , Permeabilidade , Plasmodium falciparum/patogenicidade , Forma Celular , Tamanho Celular , Modelos Teóricos , Fatores de Tempo
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(4 Pt 2): 046204, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17500975

RESUMO

Billiards are idealizations for systems where particles or waves are confined to cavities, or to other homogeneous regions. In billiard systems a point particle moves freely except for specular reflections from rigid walls. However, billiard walls are not always completely reflective and measurements inside can also open the billiard. Since boundary openings have been studied extensively in the literature, we rather model leakages inside the billiard. In particular, we investigate the classical dynamics of a leakage for a continuous family of billiard systems, that is, the stadium-lemon-billiard family. With a single parameter the geometry of the billiard can be tuned from stadium (being fully hyperbolic) over circle (integrable) to the lemon-shaped billiard (mixed chaotic). For the stadium billiard we found an algebraically decaying mean escape time with the linear size of the leakage n(esc) approximately epsilon-1 together with an exponential decay of the survival probability distribution. The finding is nearly independent of the position and size of the leakage, as long as the leakage is much smaller than the system size, and it is in good agreement with a stochastic map approximation of the dynamics. Due to the mixed phase space for lemon billiards, the mean escape time depends both on the position and geometry of the leakage. For systems where quasiregular motion dominates, we found a linear dependence of the mean escape time, n(esc) approximately 1-epsilon, which we refer to as flooding law. Our findings are helpful in understanding dynamics of leaking Hamiltonian systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...