Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 152(6): 3606, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36586858

RESUMO

A calibration technique with potential for low frequencies and sizeable systems of underwater transducers is being developed at the Swedish Defence Research Agency. The technique is based on the three-transducer spherical wave reciprocity method for use in an ice-covered lake with a depth of 220 m in the Swedish arctic zone. The calibration is performed at a depth of approximately 100 m with inter-transducer separations of 50 m, 86.6 m, and 100 m, allowing for frequencies down to 59 Hz using time-gated tone burst signals. In this paper, the calibration location, system, and technique are introduced, and the calibration results of an acoustical recorder in the range of 59 Hz-1 kHz are presented. The sensitivity is varying with frequency around -148 dB re 1 V/µPa, and the uncertainty budget is discussed.

2.
Mar Pollut Bull ; 180: 113734, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635876

RESUMO

Measurement of particle motion from an offshore piling event in the North was conducted to determine noise levels. For this purpose, a bespoken sensor was developed that was both autonomous and sensitive up to 2 kHz. The measurement was undertaken both for unmitigated and mitigated piling. Three different types of mitigation techniques were employed. The acceleration zero-to-peak values and the acceleration exposure levels were determined. The results show that inferred mitigation techniques reduce the levels significantly as well as decreases the power content of higher frequencies. These results suggest that mitigation has an effect and will reduce the effect ranges of impact on marine species.


Assuntos
Ruído
3.
Conserv Physiol ; 7(1): coz020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110769

RESUMO

Airguns used for offshore seismic exploration by the oil and gas industry contribute to globally increasing anthropogenic noise levels in the marine environment. There is concern that the omnidirectional, high intensity sound pulses created by airguns may alter fish physiology and behaviour. A controlled short-term field experiment was performed to investigate the effects of sound exposure from a seismic airgun on the physiology and behaviour of two socioeconomically and ecologically important marine fishes: the Atlantic cod (Gadus morhua) and saithe (Pollachius virens). Biologgers recording heart rate and body temperature and acoustic transmitters recording locomotory activity (i.e. acceleration) and depth were used to monitor free-swimming individuals during experimental sound exposures (18-60 dB above ambient). Fish were held in a large sea cage (50 m diameter; 25 m depth) and exposed to sound exposure trials over a 3-day period. Concurrently, the behaviour of untagged cod and saithe was monitored using video recording. The cod exhibited reduced heart rate (bradycardia) in response to the particle motion component of the sound from the airgun, indicative of an initial flight response. No behavioural startle response to the airgun was observed; both cod and saithe changed both swimming depth and horizontal position more frequently during sound production. The saithe became more dispersed in response to the elevated sound levels. The fish seemed to habituate both physiologically and behaviourally with repeated exposure. In conclusion, the sound exposures induced over the time frames used in this study appear unlikely to be associated with long-term alterations in physiology or behaviour. However, additional research is needed to fully understand the ecological consequences of airgun use in marine ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...