Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 4(2): fcac027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310831

RESUMO

People with Parkinson's disease who have elevated muscle activity during rapid eye movement sleep (REM sleep without atonia) typically have a worse motor and cognitive impairment compared with those with normal muscle atonia during rapid eye movement sleep. This study used tract-based spatial statistics to compare diffusion MRI measures of fractional anisotropy, radial, mean and axial diffusivity (measures of axonal microstructure based on the directionality of water diffusion) in white matter tracts between people with Parkinson's disease with and without rapid eye movement sleep without atonia and controls and their relationship to measures of motor and cognitive function. Thirty-eight individuals with mild-to-moderate Parkinson's disease and 21 matched control subjects underwent ultra-high field MRI (7 T), quantitative motor assessments of gait and bradykinesia and neuropsychological testing. The Parkinson's disease cohort was separated post hoc into those with and without elevated chin or leg muscle activity during rapid eye movement sleep based on polysomnography findings. Fractional anisotropy was significantly higher, and diffusivity significantly lower, in regions of the corpus callosum, projection and association white matter pathways in the Parkinson's group with normal rapid eye movement sleep muscle tone compared with controls, and in a subset of pathways relative to the Parkinson's disease group with rapid eye movement sleep without atonia. The Parkinson's disease group with elevated rapid eye movement sleep muscle tone showed significant impairments in the gait and upper arm speed compared with controls and significantly worse scores in specific cognitive domains (executive function, visuospatial memory) compared with the Parkinson's disease group with normal rapid eye movement sleep muscle tone. Regression analyses showed that gait speed and step length in the Parkinson's disease cohort were predicted by measures of fractional anisotropy of the anterior corona radiata, whereas elbow flexion velocity was predicted by fractional anisotropy of the superior corona radiata. Visuospatial memory task performance was predicted by the radial diffusivity of the posterior corona radiata. These findings show that people with mild-to-moderate severity of Parkinson's disease who have normal muscle tone during rapid eye movement sleep demonstrate compensatory-like adaptations in axonal microstructure that are associated with preserved motor and cognitive function, but these adaptations are reduced or absent in those with increased rapid eye movement sleep motor tone.

2.
J Parkinsons Dis ; 11(2): 767-778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523016

RESUMO

BACKGROUND: Subtle gait deficits can be seen in people with idiopathic rapid eye movement (REM) sleep behavior disorder (RBD), a prodromal stage of Parkinson's disease (PD) and related alpha-synucleinopathies. It is unknown if the presence and level of REM sleep without atonia (RSWA, the electromyographic hallmark of RBD) is related to the severity of gait disturbances in people with PD. OBJECTIVE: We hypothesized that gait disturbances in people with mild-to-moderate PD would be greater in participants with RSWA compared to those without RSWA and matched controls, and that gait impairment would correlate with measures of RSWA. METHODS: Spatiotemporal characteristics of gait were obtained from 41 people with PD and 21 age-matched controls. Overnight sleep studies were used to quantify muscle activity during REM sleep and group participants with PD into those with RSWA (PD-RSWA+, n = 22) and normal REM sleep muscle tone (PD-RSWA-, n = 19). Gait characteristics were compared between groups and correlated to RSWA. RESULTS: The PD-RSWA+ group demonstrated significantly reduced gait speed and step lengths and increased stance and double support times compared to controls, and decreased speed and cadence and increased stride velocity variability compared to PD-RSWA- group. Larger RSWA scores were correlated with worse gait impairment in the PD group. CONCLUSION: The presence and level of muscle tone during REM sleep is associated with the severity of gait disturbances in PD. Pathophysiological processes contributing to disordered gait may occur earlier and/or progress more rapidly in people with PD and RBD.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Marcha , Humanos , Doença de Parkinson/complicações , Transtorno do Comportamento do Sono REM/complicações , Sono REM , Sinucleinopatias
3.
Clin Neurophysiol ; 131(8): 2008-2016, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451296

RESUMO

OBJECTIVE: Increased muscle activity during rapid eye movement (REM) sleep (i.e. REM sleep without atonia) is common in people with Parkinson's disease (PD). This study tested the hypotheses that people with PD and REM sleep without atonia (RSWA) would present with more severe and symmetric rigidity compared to individuals with PD without RSWA and age-matched controls. METHODS: Sixty-one individuals participated in this study (41 PD, 20 controls). An overnight sleep study was used to classify participants with PD as having either elevated (PD-RSWA+) or normal muscle activity (PD-RSWA-) during REM sleep. Quantitative measures of rigidity were obtained using a robotic manipulandum that passively pronated and supinated the forearm. RESULTS: Quantitative measures of forearm rigidity were significantly higher in the PD-RSWA+ group compared to the control group. Rigidity was significantly more asymmetric between limbs in the PD-RSWA- group compared with controls, while there was no significant difference in symmetry between the control and PD-RSWA+ groups. CONCLUSION: In people with mild to moderate PD, RSWA is associated with an increased and more symmetric presentation of upper limb rigidity. SIGNIFICANCE: Dysfunction of brainstem systems that control muscle tone during REM sleep may contribute to increased rigidity during wakefulness in people with PD.


Assuntos
Rigidez Muscular/fisiopatologia , Tono Muscular , Doença de Parkinson/fisiopatologia , Sono REM , Idoso , Tronco Encefálico/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rigidez Muscular/etiologia , Músculo Esquelético/fisiopatologia , Doença de Parkinson/complicações , Extremidade Superior/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...