Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38776872

RESUMO

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Assuntos
Átrios do Coração , Microvasos , Isquemia Miocárdica , Transcriptoma , Humanos , Átrios do Coração/patologia , Átrios do Coração/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Isquemia Miocárdica/metabolismo , Transcriptoma/genética , Microvasos/patologia , Inflamação/patologia , Inflamação/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Regulação da Expressão Gênica
2.
Nat Med ; 30(5): 1448-1460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760586

RESUMO

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Assuntos
Transplante de Coração , Xenoenxertos , Transplante Heterólogo , Humanos , Animais , Suínos , Masculino , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Proteômica , Metabolômica , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Linfócitos T/imunologia , Linfócitos T/metabolismo , Lipidômica , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Multiômica
3.
Hum Genomics ; 17(1): 47, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270590

RESUMO

Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Fibrilação Atrial/genética , Estudo de Associação Genômica Ampla , Fenótipo , Genômica , Insuficiência Cardíaca/genética , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética
4.
Methods Mol Biol ; 2475: 157-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451756

RESUMO

MicroRNA sequencing (miRNA-seq) enables the detection and characterization of the cell miRNome, including miRNA isoforms (isomiRs) and novel miRNA species. In roughly half of the cases, the most abundant isomiR in the cells is not the reference miRNA given in miRBase, which highlights the importance of isomiR-specific analysis. Here, we describe a gel-free protocol for global miRNA profiling in vascular endothelial cells and the main steps of the subsequent data analysis with two alternative analysis methods. In addition to endothelial cells, the protocol is suitable for other cell and tissue types and has been successfully used to obtain miRNA-seq data from human cardiac tissue, plasma, pericardial fluid, and biofluid exosomes.


Assuntos
Exossomos , MicroRNAs , Células Endoteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/metabolismo
6.
Cardiovasc Res ; 117(5): 1339-1357, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32683448

RESUMO

AIMS: Oxidized phospholipids and microRNAs (miRNAs) are increasingly recognized to play a role in endothelial dysfunction driving atherosclerosis. NRF2 transcription factor is one of the key mediators of the effects of oxidized phospholipids, but the gene regulatory mechanisms underlying the process remain obscure. Here, we investigated the genome-wide effects of oxidized phospholipids on transcriptional gene regulation in human umbilical vein endothelial cells and aortic endothelial cells with a special focus on miRNAs. METHODS AND RESULTS: We integrated data from HiC, ChIP-seq, ATAC-seq, GRO-seq, miRNA-seq, and RNA-seq to provide deeper understanding of the transcriptional mechanisms driven by NRF2 in response to oxidized phospholipids. We demonstrate that presence of NRF2 motif and its binding is more prominent in the vicinity of up-regulated transcripts and transcriptional initiation represents the most likely mechanism of action. We further identified NRF2 as a novel regulator of over 100 endothelial pri-miRNAs. Among these, we characterize two hub miRNAs miR-21-5p and miR-100-5p and demonstrate their opposing roles on mTOR, VEGFA, HIF1A, and MYC expressions. Finally, we provide evidence that the levels of miR-21-5p and miR-100-5p in exosomes are increased upon senescence and exhibit a trend to correlate with the severity of coronary artery disease. CONCLUSION: Altogether, our analysis provides an integrative view into the regulation of transcription and miRNA function that could mediate the proatherogenic effects of oxidized phospholipids in endothelial cells.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilcolinas/toxicidade , Transcriptoma , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Senescência Celular , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Placa Aterosclerótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...