Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 642752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868007

RESUMO

High plasma angiotensin II (Ang II) levels are related to many diseases, including hypertension, and chronic kidney diseases (CKDs). Here, we investigated the relationship among prolonged Ang II infusion/AT1 receptor (AT1R) activation, oxidative stress, and endoplasmic reticulum (ER) stress in kidney tissue. In addition, we explored the chronic effects of Ang II on tubular Na+ transport mechanisms. Male Wistar rats were subjected to sham surgery as a control or prolonged Ang II treatment (200 ng⋅kg-1⋅min-1, 42 days) with or without losartan (10 mg⋅kg-1⋅day-1) for 14 days. Ang II/AT1R induced hypertension with a systolic blood pressure of 173.0 ± 20 mmHg (mmHg, n = 9) compared with 108.0 ± 7 mmHg (mmHg, n = 7) in sham animals. Under these conditions, gene and protein expression levels were evaluated. Prolonged Ang II administration/AT1R activation induced oxidative stress and ER stress with increased Nox2, Nox4, Cyba and Ncf1 mRNA expression, phosphorylated PERK and eIF2α protein expression as well as Atf4 mRNA expression. Ang II/AT1R also raised Il1b, Nfkb1 and Acta2 mRNA expression, suggesting proinflammatory, and profibrotic effects. Regarding Na+ tubular handling, Ang II/AT1R enhanced cortical non-phosphorylated and phospho/S552/NHE3, NHE1, ENaC ß, NKCC2, and NCC protein expression. Our results also highlight the therapeutic potential of losartan, which goes beyond the antihypertensive effect, playing an important role in kidney tissue. This treatment reduced oxidative stress and ER stress signals and recovered relevant parameters of the maintenance of renal function, preventing the progression of Ang II-induced CKD.

2.
Sci Rep ; 8(1): 18012, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573754

RESUMO

Podocyte injury is closely related to proteinuria and the progression of chronic kidney disease (CKD). Currently, there is no conclusive understanding about the mechanisms involved in albumin overload and podocyte apoptosis response. In this study, we sought to explore the ways by which intracellular albumin can mediate podocyte apoptosis. Here, immortalized mouse podocytes were treated with bovine serum albumin (BSA) at different times and concentrations, in the presence or absence of SB203580 (0.1 µM, inhibitor of mitogen-activated-protein kinase - p38MAPK). Using immunofluorescence images, flow cytometry and immunoblotting, we observed a time-dependent intracellular accumulation of fluorescent albumin-FITC-BSA, followed by concentration-and time-dependent effect of intracellular albumin overload on podocyte apoptosis, which was mediated by increased expression of the chaperone glucose-regulated-protein 78 (GRP 78) and phosphorylated inositol-requiring enzyme 1 alpha (pIRE1-α), as well as protein kinase C delta (PKC-δ), p38MAPK and cleaved caspase 12 expression. SB203580 prevented the cleavage of caspase 12 and the albumin-mediated podocyte apoptosis. These results suggest that intracellular albumin overload is associated with endoplasmic reticulum (ER) stress and upregulation of PKC-δ/p38MAPK/caspase 12 pathway, which may be a target for future therapeutic of albumin-induced podocyte apoptosis.


Assuntos
Albuminas/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Podócitos/fisiologia , Proteína Quinase C-delta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Albuminas/metabolismo , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Células Cultivadas , Citoplasma/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Podócitos/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica/farmacologia , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia
3.
BMC Nephrol ; 19(1): 179, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005635

RESUMO

BACKGROUND: Angiotensin II (Ang II) contributes to the progression of renal diseases associated with proteinuria and glomerulosclerosis mainly by inducing podocyte apoptosis. In the present study, we investigated whether the chronic effects of Ang II via AT1 receptor (AT1R) would result in endoplasmic reticulum (ER) stress/PKC-delta/p38 MAPK stimulation, and consequently podocyte apoptosis. METHODS: Wistar rats were treated with Ang II (200 ng·kg-1·min-1, 42 days) and or losartan (10 mg·kg-1·day-1, 14 days). Immortalized mouse podocyte were treated with 1 µM Ang II and/or losartan (1 µM) or SB203580 (0.1 µM) (AT1 receptor antagonist and p38 MAPK inhibitor) for 24 h. Kidney sections and cultured podocytes were used to evaluate protein expression by immunofluorescence and immunoblotting. Apoptosis was evaluated by flow cytometry and intracellular pH (pHi) was analyzed using microscopy combined with the fluorescent probe BCECF/AM. RESULTS: Compared with controls, Ang II via AT1R increased chaperone GRP 78/Bip protein expression in rat glomeruli (p < 0.001) as well as in podocyte culture (p < 0.01); increased phosphorylated eIf2-α (p < 0.05), PKC-delta (p < 0.01) and p38 MAPK (p < 0.001) protein expression. Furthermore, Ang II induced p38 MAPK-mediated late apoptosis and increased the Bax/Bcl-2 ratio (p < 0.001). Simultaneously, Ang II via AT1R induced p38 MAPK-NHE1-mediated increase of pHi recovery rate after acid loading. CONCLUSION: Together, our results indicate that Ang II-induced podocyte apoptosis is associated with AT1R/ER stress/PKC-delta/p38 MAPK axis and enhanced NHE1-mediated pHi recovery rate.


Assuntos
Angiotensina II/toxicidade , Estresse do Retículo Endoplasmático/fisiologia , Podócitos/metabolismo , Proteína Quinase C-delta/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Transformada , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Camundongos , Podócitos/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...