Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641415

RESUMO

Both the retina and brain exhibit neurovascular coupling, increased blood flow during increased neural activity. In the retina increased blood flow can be evoked by flickering light, but the magnitude of the metabolic change that underlies this is not known. Local changes in oxygen consumption (QO2) are difficult to measure in vivo when both supply and demand are changing. Here we isolated the C57BL/6J mouse retina and supplied it with oxygen from both sides of the tissue. Microelectrode recordings of PO2 were made in darkness and during 20 s of high scotopic flickering light at 1 Hz. Flicker led to a PO2 increase in the outer retina and a decrease in the inner retina, indicating that outer retinal QO2 (QOR) decreased and inner retinal QO2 (QIR) increased. A four-layer oxygen diffusion model was fitted to PO2 values obtained in darkness and at the end of flicker to determine the values of QOR and QIR. QOR in flicker was 76 ± 14% (mean and SD, n = 10) of QOR in darkness. The increase in QIR was smaller, 6.4 ± 5.0%. These metabolic changes are likely smaller than the maximum changes, because with no regeneration of pigment in the isolated retina, we limited the illumination. Further modeling indicated that at high illumination, QIR could increase by up to 45%, which is comparable to the magnitude of flow changes. This suggests that the blood flow increase is at least roughly matched to the increased metabolic demands of activity in the retina.


Assuntos
Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Oxigênio , Estimulação Luminosa , Retina , Animais , Retina/metabolismo , Consumo de Oxigênio/fisiologia , Estimulação Luminosa/métodos , Oxigênio/metabolismo , Oxigênio/sangue , Camundongos , Masculino , Luz , Escuridão , Acoplamento Neurovascular/fisiologia
2.
Curr Eye Res ; 49(1): 53-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37756520

RESUMO

PURPOSE: To understand the mechanism of changes in the c-wave of the electroretinogram (ERG) in diabetic rats, and to explore how glucose manipulations affect the c-wave. METHODS: Vitreal ERGs were recorded in control and diabetic Long-Evans rats, 3-60 weeks after IP vehicle or streptozotocin. A few experiments were performed on Brown Norway rats. Voltage responses to current pulses were used to measure the transepithelial resistance of the retinal pigment epithelium (RPE). RESULTS: During development of diabetes the b-wave amplitude progressively decreased to about half of the initial amplitude after a year. In contrast, the c-wave was strongly affected from the very beginning (3 weeks) of diabetes. In control rats, the c-wave was cornea-positive at lower illuminations but was cornea-negative at higher (photopic) illumination. In diabetics, the whole amplitude-intensity curve was shifted toward negativity. The magnitude of this shift was markedly affected by acute glucose manipulations in diabetics but not in controls. Increased blood glucose made the c-wave more negative, and decreased blood glucose with insulin had the opposite effect. Experimentally induced acidification of the retina had a small effect that was different from diabetes, shifting the c-wave toward positivity, slightly in controls and more noticeably in diabetics. One reason for the significant negativity of the diabetic ERG was a decrease of the cornea-positive response of the RPE due to a decrease of the transepithelial resistance. CONCLUSIONS: The ERG c-wave is more negative in diabetics than in control animals, and is far more sensitive to changes in blood glucose. The increased negativity is largely if not entirely due to changes in the transepithelial resistance of the RPE, an electrical analog of the breakdown of the blood-retinal barrier observed in other studies. The sensitivity of the c-wave to glucose in diabetics may also be due to changes in transepithelial resistance.


Assuntos
Acidose , Diabetes Mellitus Experimental , Hiperglicemia , Ratos , Animais , Glicemia , Ratos Long-Evans , Retina , Eletrorretinografia , Ratos Endogâmicos BN
3.
Exp Eye Res ; 233: 109554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437835

RESUMO

The retina has a large demand for oxygen, but there is only limited information on differences between oxygen utilization (QO2) in the inner and outer retina, and limited data on mouse, which has become a prevalent animal model. This study utilized the isolated mouse retina, which allowed more detailed spatial analysis of QO2 than other methods. Oxygen sensitive microelectrodes were used to obtain profiles of oxygen tension across the isolated mouse retina, and mathematical models of retinal oxygen diffusion with four and five layers were fitted to the data to obtain values for QO2 of the outer retina (QOR) and inner retina (QIR). The boundaries between layers were free parameters in these models. The five-layer model resulted in lower error between the model and data, and agreed better with known anatomy. The three layers for the outer retina occupied half of the retina, as in prior work on rat, cat, and monkey, and the inner half of the retina could be divided into two layers, in which the one closer to the vitreous (layer 5) had much lower QO2 than the more distal inner retina (layer 4). QIR in darkness was 3.9 ml O2-100 g-1-min-1, similar to the value for intact cat retina, and did not change during light. QOR in darkness was 2.4 ml O2-100 g-1-min-1, lower than previous values in cat and rat, possibly because of damage to photoreceptors during isolation. There was a tendency for QOR to be lower in light, but it was not significant in this preparation.


Assuntos
Oxigênio , Retina , Ratos , Camundongos , Animais , Consumo de Oxigênio , Células Fotorreceptoras , Modelos Animais
4.
Front Cell Neurosci ; 16: 983298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339824

RESUMO

The dynamic interaction between excitatory and inhibitory activity in the brain is known as excitatory-inhibitory balance (EIB). A significant shift in EIB toward excitation has been observed in numerous pathological states and diseases, such as autism or epilepsy, where interneurons may be dysfunctional. The consequences of this on neurovascular interactions remains to be elucidated. Specifically, it is not known if there is an elevated metabolic consumption of oxygen due to increased excitatory activity. To investigate this, we administered microinjections of picrotoxin, a gamma aminobutyric acid (GABA) antagonist, to the rabbit cortex in the awake state to mimic the functional deficiency of GABAergic interneurons. This caused an observable shift in EIB toward excitation without the induction of seizures. We used chronically implanted electrodes to measure both neuronal activity and brain tissue oxygen concentrations (PO2) simultaneously and in the same location. Using a high-frequency recording rate for PO2, we were able to detect two important phenomena, (1) the shift in EIB led to a change in the power spectra of PO2 fluctuations, such that higher frequencies (8-15 cycles per minute) were suppressed and (2) there were brief periods (dips with a duration of less than 100 ms associated with neuronal bursts) when PO2 dropped below 10 mmHg, which we defined as the threshold for hypoxia. The dips were followed by an overshoot, which indicates either a rapid vascular response or decrease in oxygen consumption. Our results point to the essential role of interneurons in brain tissue oxygen regulation in the resting state.

5.
Exp Eye Res ; 221: 109133, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636490

RESUMO

Retinal neurons spend most of their energy to support the transmembrane movement of ions. Light-induced electrical activity is associated with a redistribution of ions, which affects the energy demand and results in a change in metabolism. Light-induced metabolic changes are expected to be different in distal and proximal retina due to differences in the light responses of different retinal cells. Extracellular K+ concentration ([K+]o) is a reliable indicator of local electrophysiological activity, and the purpose of this work was to compare [K+]o changes evoked by steady and flickering light in distal and proximal retina. Data were obtained from isolated mouse (C57Bl/6J) retinae. Double-barreled K+-selective microelectrodes were used to simultaneously record [K+]o and local ERGs. In the distal retina, photoreceptor hyperpolarization led to suppression of ion transfer, a decrease in [K+]o by 0.3-0.5 mM, reduced energy demand, and, as previously shown in vivo, decreased metabolism. Flickering light had the same effect on [K+]o in the distal retina as steady light of equivalent illumination. The conductance and voltage changes in postreceptor neurons are cell-specific, but the overall effect of steady light in the proximal retina is excitation, which is reflected in a [K+]o increase there (by a maximum of 0.2 mM). In steady light the [K+]o increase lasts only 1-2 s, but a sustained [K+]o increase is evoked by flickering light. A squarewave low frequency (1 Hz) flicker of photopic intensity produced the largest increases in [K+]o. Judging by measurements of [K+]o, steady illumination decreases energy metabolism in the distal retina, but not in the proximal retina (except for the first few seconds). Flickering light evokes the same decrease in the distal retina, but also evokes a sustained [K+]o increase in the proximal retina, suggesting an increase of metabolic demand there, especially at 1 Hz, when neurons of both on- and off-pathways appear to contribute maximally. This proximal retinal metabolic response to flicker correlates to the increase in blood flow during flicker that constitutes neurovascular coupling.


Assuntos
Luz , Retina , Animais , Metabolismo Energético , Camundongos , Estimulação Luminosa , Células Fotorreceptoras/metabolismo , Potássio/metabolismo , Retina/metabolismo
6.
Vis Neurosci ; 38: E010, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34294176

RESUMO

The electroretinogram (ERG) has been employed for years to collect information about retinal function and pathology. The usefulness of this noninvasive test depends on our understanding of the cell sources that generate the ERG. Important contributors to the ERG are glial Müller cells (MCs), which are capable of generating substantial transretinal potentials in response to light-induced changes in extracellular K+ concentration ([K+]o). For instance, the MCs generate the slow PIII (sPIII) component of the ERG as a reaction to a photoreceptor-induced [K+]o decrease in the subretinal space. Similarly, an increase of [K+]o related to activity of postreceptor retinal neurons also produces transretinal glial currents, which can potentially influence the amplitude and shape of the b-wave, one of the most frequently analyzed ERG components. Although it is well documented that the majority of the b-wave originates from On-bipolar cells, some contribution from MCs was suggested many years ago and has never been experimentally rejected. In this work, detailed information about light-evoked [K+]o changes in the isolated mouse retina was collected and then analyzed with a relatively simple linear electrical model of MCs. The results demonstrate that the cornea-positive potential generated by MCs is too small to contribute noticeably to the b-wave. The analysis also explains why MCs produce the large cornea-negative sPIII subcomponent of the ERG, but no substantial cornea-positive potential.


Assuntos
Eletrorretinografia , Células Ependimogliais , Animais , Camundongos , Microeletrodos , Estimulação Luminosa , Potássio , Retina
7.
Heliyon ; 6(12): e05686, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33367124

RESUMO

Ketamine/xylazine anesthesia has been used primarily for short term procedures in animals, but two prior reports used intravenous ketamine/xylazine for experiments taking many hours. However, there is a discrepancy about the appropriate dose, which is resolved here. Adult Long-Evans rats were used for recording from the retina. Doses of Ketamine/xylazine were adjusted to minimize anesthetic in terminal experiments lasting 10 h. An allometric relation was fitted to the resulting data on doses as a function of body weight, and compared to prior work. The allometric relationship between the continuously infused specific dose and weight was: dose = 9.13 (weight)-1.213 (r2 = 0.73), where dose is in mg-kg-1-hr-1 and rat weight is in kg. The dose of xylazine was 3.3% of the ketamine dose. No attempt was made to explore different relative doses of xylazine and ketamine. Prior work is consistent with this relationship, showing that the earlier discrepancy resulted from using rats of different sizes. Ketamine at the doses used here still depressed the electroretinogram relative to historical controls using urethane. We conclude that intravenous ketamine dosing in rats should not use the same mg-kg-1-hr-1 dose for all rats, but take into account the strong allometric relationship between dose and rat weight. There is an advantage in using smaller doses in order to prevent unnecessary depression of neural responses.

8.
Ann Biomed Eng ; 48(6): 1590-1615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253615

RESUMO

Undergraduate education in biomedical engineering (BME) and bioengineering (BioE) has been in place for more than 50 years. It has been important in shaping the field as a whole. The early undergraduate programs developed shortly after BME graduate programs, as universities sought to capitalize on the interest of students and the practical advantages of having BME departments that could control their own resources and curriculum. Unlike other engineering fields, BME did not rely initially on a market for graduates in industry, although BME graduates subsequently have found many opportunities. BME undergraduate programs exploded in the 2000s with funding from the Whitaker Foundation and resources from other agencies such as the National Institute of Biomedical Imaging and Bioengineering. The number of programs appears to be reaching a plateau, with 118 accredited programs in the United States at present. We show that there is a core of material that most undergraduates are expected to know, which is different from the knowledge base of other engineers not only in terms of biology, but in the breadth of engineering. We also review the role of important organizations and conferences in the growth of BME, special features of BME education, first placements of BME graduates, and a few challenges to address in the future.


Assuntos
Engenharia Biomédica/educação , Engenharia Biomédica/história , Emprego , História do Século XX , História do Século XXI , Humanos , Universidades
9.
Ann Biomed Eng ; 48(3): 905-912, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32026231

RESUMO

This paper provides a synopsis of discussions related to biomedical engineering core curricula that occurred at the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. This discussion focused on six key questions: QI: Is there a core curriculum, and if so, what are its components? QII: How does our purported core curriculum prepare students for careers, particularly in industry? QIII: How does design distinguish BME/BIOE graduates from other engineers? QIV: What is the state of engineering analysis and systems-level modeling in BME/BIOE curricula? QV: What is the role of data science in BME/BIOE undergraduate education? QVI: What core experimental skills are required for BME/BIOE undergrads? s. Indeed, BME/BIOI core curricula exists and has matured to emphasize interdisciplinary topics such as physiology, instrumentation, mechanics, computer programming, and mathematical modeling. Departments demonstrate their own identities by highlighting discipline-specific sub-specialties. In addition to technical competence, Industry partners most highly value our students' capacity for problem solving and communication. As such, BME/BIOE curricula includes open-ended projects that address unmet patient and clinician needs as primary methods to prepare graduates for careers in industry. Culminating senior design experiences distinguish BME/BIOE graduates through their development of client-centered engineering solutions to healthcare problems. Finally, the overall BME/BIOE curriculum is not stagnant-it is clear that data science will become an ever-important element of our students' training and that new methods to enhance student engagement will be of pedagogical importance as we embark on the next decade.


Assuntos
Engenharia Biomédica/educação , Currículo , Ciência de Dados , Humanos , Estudantes , Universidades
10.
Ann Neurol ; 87(3): 442-455, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31925846

RESUMO

OBJECTIVE: There are currently no definitive disease-modifying therapies for traumatic brain injury (TBI). In this study, we present a strong therapeutic candidate for TBI, immunomodulatory nanoparticles (IMPs), which ablate a specific subset of hematogenous monocytes (hMos). We hypothesized that prevention of infiltration of these cells into brain acutely after TBI would attenuate secondary damage and preserve anatomic and neurologic function. METHODS: IMPs, composed of US Food and Drug Administration-approved 500nm carboxylated-poly(lactic-co-glycolic) acid, were infused intravenously into wild-type C57BL/6 mice following 2 different models of experimental TBI, controlled cortical impact (CCI), and closed head injury (CHI). RESULTS: IMP administration resulted in remarkable preservation of both tissue and neurological function in both CCI and CHI TBI models in mice. After acute treatment, there was a reduction in the number of immune cells infiltrating into the brain, mitigation of the inflammatory status of the infiltrating cells, improved electrophysiologic visual function, improved long-term motor behavior, reduced edema formation as assessed by magnetic resonance imaging, and reduced lesion volumes on anatomic examination. INTERPRETATION: Our findings suggest that IMPs are a clinically translatable acute intervention for TBI with a well-defined mechanism of action and beneficial anatomic and physiologic preservation and recovery. Ann Neurol 2020;87:442-455.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Administração Intravenosa , Animais , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Movimento Celular/efeitos dos fármacos , Edema/complicações , Edema/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Imageamento por Ressonância Magnética , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neuroimagem , Recuperação de Função Fisiológica/efeitos dos fármacos
11.
Invest Ophthalmol Vis Sci ; 60(14): 4924-4930, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770432

RESUMO

Purpose: In the dark, photoreceptor outer segments contain high levels of cyclic guanosine 3'-5' monophosphate (cGMP), which binds to ion channels, holding them open and allowing an influx of cations. Ion pumping activity, which balances cation influx, uses considerable amounts of adenosine triphosphate (ATP) and oxygen. Light reduces cation influx and thereby lowers metabolic demand. Blood vessels are compromised in the diabetic retina and may not be able to meet the higher metabolic demand in darkness. Emixustat is a visual cycle modulator (VCM) that reduces chromophore levels and, therefore, may mimic light conditions. We evaluated the effect of emixustat on oxygen consumption and cation influx in dark conditions. Methods: Cation influx was measured in rats using Mn2+-magnetic resonance imaging (MEMRI). Retinal oxygen profiles were recorded to evaluate oxygen consumption. In the MEMRI protocol, animals were treated with either emixustat or vehicle. In the oxygen protocol, animals were untreated or treated with emixustat. Results: In vehicle-treated animals, cation channel activity increased in the dark. Emixustat treatment reduced cation channel activity; activity was comparable to vehicle-treated controls in light conditions. In vehicle-treated animals, minimum retinal oxygen tension decreased as the retina recovered from a photobleach, indicating that more oxygen was being consumed. Emixustat treatment prevented the decrease in oxygen pressure after photobleach. Conclusions: Emixustat reduced the cation influx and retinal oxygen consumption associated with dark conditions. VCMs are a promising potential treatment for ischemic retinal neovascularization, such as that in diabetic retinopathy.


Assuntos
Adaptação à Escuridão/fisiologia , Manganês/metabolismo , Consumo de Oxigênio/fisiologia , Éteres Fenílicos/farmacologia , Propanolaminas/farmacologia , Retina/efeitos dos fármacos , Animais , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Long-Evans , Retina/metabolismo , cis-trans-Isomerases/antagonistas & inibidores
12.
J Clin Med ; 8(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382617

RESUMO

Using adaptive optics scanning laser ophthalmoscopy (AOSLO), we measured retinal blood velocity and flow in healthy control eyes and eyes of diabetic patients with or without retinopathy. This cross-sectional study included 39 eyes of 30 patients with diabetes (DM) with mild non-proliferative diabetic retinopathy (NPDR) or without retinopathy (DM no DR) and 21 eyes of 17 healthy age-matched controls. Participants were imaged with a commercial optical coherence tomography angiography (OCTA) device (RTVue-XR Avanti) and AOSLO device (Apaeros Retinal Imaging System, Boston Micromachines). We analyzed AOSLO-based retinal blood velocity and flow, and OCTA-based vessel density of the superficial (SCP), deep retinal capillary plexus (DCP), and full retina. Retinal blood velocity was significantly higher in eyes with DM no DR and lower in NPDR across all vessel diameters compared to controls. Retinal blood flow was significantly higher in DM no DR and lower in NPDR in vessel diameters up to 60 µm compared to controls. When comparing flow outliers (low-flow DM no DR eyes and high-flow NPDR eyes), we found they had a significantly different retinal vessel density compared to the remaining eyes in the respective groups. Retinal blood velocity and flow is increased in eyes with DM no DR, while these parameters are decreased in eyes with mild NPDR compared to healthy age-matched controls. The similarity of OCTA vessel density among outliers in the two diabetic groups suggests an initial increase followed by progressive decline in blood flow and OCTA vessel density with progression to clinical retinopathy, which warrants further investigation.

13.
Am J Ophthalmol ; 206: 217-227, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31078542

RESUMO

PURPOSE: This study evaluated the macular microvascular changes in eyes with proliferative diabetic retinopathy (PDR) following panretinal photocoagulation (PRP). DESIGN: Using optical coherence tomographic angiography (OCTA), we prospectively studied 10 eyes of 10 subjects with high-risk PDR immediately before, at 1 month, and at 3-6 months following PRP, using a 3- × 3-mm OCTA scan at each visit. METHODS: The following parameters were calculated for the superficial (SCP), middle (MCP), and deep capillary plexuses (DCP): parafoveal vessel density (VD), adjusted flow index (AFI), and percent area of nonperfusion (PAN). Parafoveal SCP vessel-length density (VLD) was also evaluated. We performed univariate and multivariable statistics, adjusting for age and signal strength. To model the hemodynamic effect of PRP, we also present a mathematical model based on electrical circuits. RESULTS: We found no significant difference for the vascular density parameters following PRP, except for decreased density at the MCP at the latest timepoint in the adjusted multivariable model. PAN, a metric of nonperfusion adjusted for noise, and AFI, a surrogate metric of blood flow, showed significant increases at all capillary levels in the adjusted model. Our mathematical model explained how PRP would increase macular blood flow. CONCLUSIONS: Using OCTA, we found an overall increase in the flow metrics of all capillary layers in the macula following PRP, unrelated to macular edema or thickening, in line with the mathematical model. Our results suggest an overall redistribution of blood flow to the posterior pole following PRP, adding a new dimension to our understanding of the complex biologic effects of PRP in PDR. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Assuntos
Retinopatia Diabética/fisiopatologia , Angiofluoresceinografia/métodos , Fotocoagulação a Laser/métodos , Macula Lutea/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Vasos Retinianos/fisiopatologia , Tomografia de Coerência Óptica/métodos , Adulto , Idoso , Capilares/patologia , Capilares/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/cirurgia , Feminino , Seguimentos , Fundo de Olho , Humanos , Masculino , Microcirculação/fisiologia , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Prospectivos , Reprodutibilidade dos Testes , Vasos Retinianos/diagnóstico por imagem
14.
PLoS Comput Biol ; 15(3): e1006894, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870418

RESUMO

Neuronal activity is associated with transmembrane ionic redistribution, which can lead to an osmotic imbalance. Accordingly, activity-dependent changes of the membrane potential are sometimes accompanied by changes in intracellular and/or extracellular volume. Experimental data that include distributions of ions and volume during neuronal activity are rare and rather inconsistent partly due to the technical difficulty of performing such measurements. However, progress in understanding the interrelations among ions, voltage and volume has been achieved recently by computational modelling, particularly "charge-difference" modelling. In this work a charge-difference computational model was used for further understanding of the specific roles for cations and anions. Our simulations show that without anion conductances the transmembrane movements of cations are always osmotically balanced, regardless of the stoichiometry of the pump or the ratio of Na+ and K+ conductances. Yet any changes in cation conductance or pump activity are associated with changes of the membrane potential, even when a hypothetically electroneutral pump is used in calculations and K+ and Na+ conductances are equal. On the other hand, when a Cl- conductance is present, the only way to keep the Cl-equilibrium potential in accordance with the changed membrane potential is to adjust cell volume. Importantly, this voltage-evoked Cl--dependent volume change does not affect intracellular cation concentrations or the amount of energy that is necessary to support the system. Taking other factors into consideration (i.e. the presence of internal impermeant poly-anions, the activity of cation-Cl- cotransporters, and the buildup of intra- and extracellular osmolytes, both charged and electroneutral) adds complexity, but does not change the main principles.


Assuntos
Homeostase , Potássio/metabolismo , Sódio/metabolismo , Simulação por Computador , Condutividade Elétrica , Metabolismo Energético , Transporte de Íons , Potenciais da Membrana , Concentração Osmolar
15.
Invest Ophthalmol Vis Sci ; 60(2): 723-730, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30786276

RESUMO

Purpose: The purpose of this study was to determine whether the ability of the rat retina to control its pH is affected by diabetes. Methods: Double-barreled H+-selective microelectrodes were used to measure extracellular [H+] in the dark-adapted retina of intact control and diabetic Long-Evans rats 1 to 6 months after intraperitoneal injection of vehicle or streptozotocin, respectively. Two manipulations-increasing of blood glucose and intravenous injection of the carbonic anhydrase blocker dorzolamide (DZM)-were used to examine their effects on retinal pH regulation. Results: An increase of retinal acidity was correlated with the diabetes-related increase in blood glucose, but only between 1 and 3 months of diabetes, not earlier or later. Adding intravenous glucose had no noticeable effect on the retinal acidity of control animals. In contrast, similar injections of glucose in diabetic rats significantly increased the acidity of the retina. Again, the largest increase of retinal acidity due to artificially elevated blood glucose was observed at 1 to 3 months of diabetes. Suppression of carbonic anhydrase by DZM dramatically increased the retinal acidity in both control and diabetic retinas to a similar degree. However, in controls, the strongest effect of DZM was recorded within 10 minutes after the injection, but in diabetics, the effect tended to increase with time and after 2 hours could be two to three times larger than at the beginning. Conclusions: During development of diabetes in rats, the control over retinal pH is partly compromised so that conditions that perturb retinal pH lead to larger and/or more sustained changes than in control animals.


Assuntos
Acidose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/metabolismo , Retina/metabolismo , Animais , Glicemia/metabolismo , Adaptação à Escuridão , Eletrorretinografia , Concentração de Íons de Hidrogênio , Eletrodos Seletivos de Íons , Ratos , Ratos Long-Evans , Estreptozocina
16.
Curr Eye Res ; 43(7): 902-912, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29641914

RESUMO

PURPOSE: Changes in retinal pH may contribute to a variety of eye diseases. To study the effect of acidosis alone, we induced systemic metabolic acidosis and hypothesized that the retina would respond with altered expression of genes involved in acid/base regulation. METHODS: Systemic metabolic acidosis was induced in Long-Evans rats for up to 2 weeks by adding NH4Cl to the drinking water. After 2 weeks, venous pH was 7.25 ± 0.08 (SD) and [HCO3-] was 21.4 ± 4.6 mM in acidotic animals; pH was 7.41 ± 0.03 and [HCO3-] was 30.5 ± 1.0 mM in controls. Retinal mRNAs were quantified by quantitative reverse transcription polymerase chain reaction. Protein was quantified with Western blots and localized by confocal microscopy. Retinal [H+]o was measured in vivo with pH microelectrodes in animals subjected to metabolic acidosis and in controls. RESULTS: NH4Cl in drinking water or given intravenous was effective in acidifying the retina. Cariporide, a blocker of Na+/H+ exchange, further acidified the retina. Metabolic acidosis for 2 weeks led to increases of 40-100% in mRNA for carbonic anhydrase isoforms II (CA-II) and XIV (CA-XIV) and acid-sensing ion channels 1 and 4 (ASIC1 and ASIC4) (all p < 0.005). Expression of anion exchange protein 3 (AEP-3) and Na+/H+ exchanger (NHE)-1 also increased by ≥50% (both p < 0.0001). Changes were similar after 1 week of acidosis. Protein for AEP-3 doubled. NHE-1 co-localized with vascular markers, particularly in the outer plexiform layer. CA-II was located in the neural parenchyma of the ganglion cell layer and diffusely in the rest of the inner retina. CONCLUSIONS: The retina responds to systemic acidosis with increased expression of proton and bicarbonate exchangers, carbonic anhydrase, and ASICs. While responses to acidosis are usually associated with renal regulation, these studies suggest that the retina responds to changes in local pH presumably to control its acid/base environment in response to systemic acidosis.


Assuntos
Acidose/metabolismo , Retina/metabolismo , Acidose/genética , Acidose/fisiopatologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Masculino , RNA/genética , Ratos , Ratos Long-Evans , Retina/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trocadores de Sódio-Hidrogênio/biossíntese , Trocadores de Sódio-Hidrogênio/genética
17.
Neuropharmacology ; 135: 368-375, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29580952

RESUMO

Inhaled general anesthetics are used commonly in adults and children, and a growing body of literature from animals and humans suggests that exposure to anesthesia at an early age can impact brain development. While the origin of these effects is not well understood, it is known that anesthesia can disrupt oxygen regulation in the brain, which is critically important for maintaining healthy brain function. Here we investigated how anesthesia affected brain tissue oxygen regulation in neonatal rabbits by comparing brain tissue oxygen and single unit activity in the awake and anesthetized states. We tested two common general anesthetics, isoflurane and sevoflurane, delivered in both air and 80% oxygen. Our findings show that general anesthetics can greatly increase brain tissue PO2 in neonates, especially when combined with supplemental oxygen. Although isoflurane and sevoflurane belong to the same class of anesthetics, notable differences were observed in their effects upon neuronal activity and spontaneous respiration. Our findings point to the need to consider the potential effects of hyperoxia when supplemental oxygen is utilized, particularly in children and neonates.


Assuntos
Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Isoflurano/farmacologia , Oxigênio/metabolismo , Sevoflurano/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Eletrodos Implantados , Coelhos
18.
Invest Ophthalmol Vis Sci ; 58(2): 981-989, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535269

RESUMO

Purpose: To investigate inner retinal oxygen metabolic rate (IRMRO2) during early stages of type 1 diabetes in a transgenic mouse model. Methods: In current study, we involved seven diabetic mice (Akita/+, TSP1-/-) and seven control mice (TSP1-/-), and applied visible-light optical coherence tomography (vis-OCT) to image functional parameters including retinal blood flow rate, oxygen saturation (sO2) and the IRMRO2 value longitudinally from 5 weeks of age to 13 weeks of age. After imaging at 13 weeks of age, we analyzed the imaging results, and examined histology of mouse retina. Results: Between diabetic mice and the control group, we observed significant differences in venous sO2 from 9 weeks of age (P = 0.006), and significant increment in IRMRO2 from 11 weeks of age (P = 0.001) in diabetic mice compared with control group. We did not find significant differences in retinal blood flow rate as well as arterial sO2 during imaging between diabetic and control mice. Histologic examination of diabetic and control mice at 13 weeks of age also revealed no anatomical retinal alternations. Conclusions: In diabetic retinopathy, complications in retinal oxygen metabolism may occur before changes of retinal anatomical structure.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/metabolismo , Retina/metabolismo , Vasos Retinianos/fisiopatologia , Animais , Capilares/patologia , Capilares/fisiopatologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Oximetria , Fluxo Sanguíneo Regional , Retina/patologia , Retina/fisiopatologia , Vasos Retinianos/patologia , Tomografia de Coerência Óptica , Ultrassonografia Doppler
19.
Prog Retin Eye Res ; 58: 115-151, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28109737

RESUMO

This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory.


Assuntos
Adaptação à Escuridão , Oxigênio/metabolismo , Retina/metabolismo , Doenças Retinianas , Animais , Humanos , Fluxo Sanguíneo Regional , Retina/patologia , Retina/fisiopatologia , Doenças Retinianas/diagnóstico , Doenças Retinianas/metabolismo , Doenças Retinianas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...